• Title/Summary/Keyword: Prime ring

Search Result 358, Processing Time 0.025 seconds

GRADED PRIMAL SUBMODULES OF GRADED MODULES

  • Darani, Ahmad Yousefian
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.5
    • /
    • pp.927-938
    • /
    • 2011
  • Let G be an abelian monoid with identity e. Let R be a G-graded commutative ring, and M a graded R-module. In this paper we first introduce the concept of graded primal submodules of M an give some basic results concerning this class of submodules. Then we characterize the graded primal ideals of the idealization R(+)M.

NONLINEAR MAPS PRESERVING THE MIXED PRODUCT *[X ⋄ Y, Z] ON *-ALGEBRAS

  • Raof Ahmad Bhat;Abbas Hussain Shikeh;Mohammad Aslam Siddeeque
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.4
    • /
    • pp.1019-1028
    • /
    • 2023
  • Let 𝔄 and 𝔅 be unital prime *-algebras such that 𝔄 contains a nontrivial projection. In the present paper, we show that if a bijective map Θ : 𝔄 → 𝔅 satisfies Θ(*[X ⋄ Y, Z]) = *[Θ(X) ⋄ Θ(Y), Θ(Z)] for all X, Y, Z ∈ 𝔄, then Θ or -Θ is a *-ring isomorphism. As an application, we shall characterize such maps in factor von Neumann algebras.

Population Dynamics of Corbicula ( Corbicula) japonica Prime from Namdae Stream in Yangyang, Korea (강원도 양양 남대천에서 채집된 일본재첩, Corbicula (Corbicula) japonica Prime의 수산자원학적 연구)

  • Kwon Dae Hyeon;Kang Yong Joo;Kim Wan Ki;Lee Chae Sung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.35 no.6
    • /
    • pp.686-695
    • /
    • 2002
  • Samples of Corbicula ( Corbicula) japonica Prime of Namdae Stream in Gangnung were collected from November 2000 to October 2001. Age of C. (C.) japonica was determined from the rings on the shell, The shell length of the samples ranged from 8 mm to 38 mm. The ring on the shell was formed once a year in March. Von Bertalanffy's growth parameters were estimated using a nonlinear regression method, asyinptotie shell length ($L_{\omega}$) was 48,98 mm, K was 0.20421year, theoretical age at 0 shell length $(t_0)$ was 0.3169 year, and asymptotic total weight ($W_{\omega}$) was 41.37 g. The formula of allomeky between shell length (L, mm) and total weight (W, g) of the brackish water clam was W=3.42$\times$10^{-4}L^{3}. The annual survival rate was estimated at 0.3799, instantaneous coefficient of natural mortality was 0.5007/year, and instantaneous coefficient of fishing mortality was 0.46721year. The age at first capture was estimated at 2.1593 year using shell length compositions of the brackish water clam, The current yield-per-recruit at 0.4672/year of fishing mortality was 0.6595 g. F_0.1 was estimated at 0.1865/year, Acceptable biological catch was estimated at 14.4 metric ton.

ON INJECTIVITY AND P-INJECTIVITY, IV

  • Chi Ming, Roger Yue
    • Bulletin of the Korean Mathematical Society
    • /
    • v.40 no.2
    • /
    • pp.223-234
    • /
    • 2003
  • This note contains the following results for a ring A : (1) A is simple Artinian if and only if A is a prime right YJ-injective, right and left V-ring with a maximal right annihilator ; (2) if A is a left quasi-duo ring with Jacobson radical J such that $_{A}$A/J is p-injective, then the ring A/J is strongly regular ; (3) A is von Neumann regular with non-zero socle if and only if A is a left p.p.ring containing a finitely generated p-injective maximal left ideal satisfying the following condition : if e is an idempotent in A, then eA is a minimal right ideal if and only if Ae is a minimal left ideal ; (4) If A is left non-singular, left YJ-injective such that each maximal left ideal of A is either injective or a two-sided ideal of A, then A is either left self-injective regular or strongly regular : (5) A is left continuous regular if and only if A is right p-injective such that for every cyclic left A-module M, $_{A}$M/Z(M) is projective. ((5) remains valid if 《continuous》 is replaced by 《self-injective》 and 《cyclic》 is replaced by 《finitely generated》. Finally, we have the following two equivalent properties for A to be von Neumann regula. : (a) A is left non-singular such that every finitely generated left ideal is the left annihilator of an element of A and every principal right ideal of A is the right annihilator of an element of A ; (b) Change 《left non-singular》 into 《right non-singular》in (a).(a).

GRADED INTEGRAL DOMAINS AND PRÜFER-LIKE DOMAINS

  • Chang, Gyu Whan
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.6
    • /
    • pp.1733-1757
    • /
    • 2017
  • Let $R={\oplus}_{{\alpha}{\in}{\Gamma}}R_{\alpha}$ be an integral domain graded by an arbitrary torsionless grading monoid ${\Gamma}$, ${\bar{R}}$ be the integral closure of R, H be the set of nonzero homogeneous elements of R, C(f) be the fractional ideal of R generated by the homogeneous components of $f{\in}R_H$, and $N(H)=\{f{\in}R{\mid}C(f)_v=R\}$. Let $R_H$ be a UFD. We say that a nonzero prime ideal Q of R is an upper to zero in R if $Q=fR_H{\cap}R$ for some $f{\in}R$ and that R is a graded UMT-domain if each upper to zero in R is a maximal t-ideal. In this paper, we study several ring-theoretic properties of graded UMT-domains. Among other things, we prove that if R has a unit of nonzero degree, then R is a graded UMT-domain if and only if every prime ideal of $R_{N(H)}$ is extended from a homogeneous ideal of R, if and only if ${\bar{R}}_{H{\backslash}Q}$ is a graded-$Pr{\ddot{u}}fer$ domain for all homogeneous maximal t-ideals Q of R, if and only if ${\bar{R}}_{N(H)}$ is a $Pr{\ddot{u}}fer$ domain, if and only if R is a UMT-domain.

SIMPLE VALUATION IDEALS OF ORDER TWO IN 2-DIMENSIONAL REGULAR LOCAL RINGS

  • Hong, Joo-Youn;Lee, Hei-Sook;Noh, Sun-Sook
    • Communications of the Korean Mathematical Society
    • /
    • v.20 no.3
    • /
    • pp.427-436
    • /
    • 2005
  • Let (R, m) be a 2-dimensional regular local ring with algebraically closed residue field R/m. Let K be the quotient field of R and v be a prime divisor of R, i.e., a valuation of K which is birationally dominating R and residually transcendental over R. Zariski showed that there are finitely many simple v-ideals $m=P_0\;{\supset}\;P_1\;{\supset}\;{\cdotS}\;{\supset}\;P_t=P$ and all the other v-ideals are uniquely factored into a product of those simple ones. It then was also shown by Lipman that the predecessor of the smallest simple v-ideal P is either simple (P is free) or the product of two simple v-ideals (P is satellite), that the sequence of v-ideals between the maximal ideal and the smallest simple v-ideal P is saturated, and that the v-value of the maximal ideal is the m-adic order of P. Let m = (x, y) and denote the v-value difference |v(x) - v(y)| by $n_v$. In this paper, if the m-adic order of P is 2, we show that $O(P_i)\;=\;1\;for\;1\;{\leq}\;i\; {\leq}\;{\lceil}\;{\frac{b+1}{2}}{\rceil}\;and\;O(P_i)\;=2\;for\;{\lceil}\;\frac{b+3}{2}\rceil\;{\leq}\;i\;\leq\;t,\;where\;b=n_v$. We also show that $n_w\;=\;n_v$ when w is the prime divisor associated to a simple v-ideal $Q\;{\supset}\;P$ of order 2 and that w(R) = v(R) as well.

ON THE FIRST GENERALIZED HILBERT COEFFICIENT AND DEPTH OF ASSOCIATED GRADED RINGS

  • Mafi, Amir;Naderi, Dler
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.2
    • /
    • pp.407-417
    • /
    • 2020
  • Let (R, m) be a d-dimensional Cohen-Macaulay local ring with infinite residue field. Let I be an ideal of R that has analytic spread ℓ(I) = d, satisfies the Gd condition, the weak Artin-Nagata property AN-d-2 and m is not an associated prime of R/I. In this paper, we show that if j1(I) = λ(I/J) + λ[R/(Jd-1 :RI+(Jd-2 :RI+I):R m)] + 1, then I has almost minimal j-multiplicity, G(I) is Cohen-Macaulay and rJ(I) is at most 2, where J = (x1, , xd) is a general minimal reduction of I and Ji = (x1, , xi). In addition, the last theorem is in the spirit of a result of Sally who has studied the depth of associated graded rings and minimal reductions for m-primary ideals.

A Secure Key Predistribution Scheme for WSN Using Elliptic Curve Cryptography

  • Rajendiran, Kishore;Sankararajan, Radha;Palaniappan, Ramasamy
    • ETRI Journal
    • /
    • v.33 no.5
    • /
    • pp.791-801
    • /
    • 2011
  • Security in wireless sensor networks (WSNs) is an upcoming research field which is quite different from traditional network security mechanisms. Many applications are dependent on the secure operation of a WSN, and have serious effects if the network is disrupted. Therefore, it is necessary to protect communication between sensor nodes. Key management plays an essential role in achieving security in WSNs. To achieve security, various key predistribution schemes have been proposed in the literature. A secure key management technique in WSN is a real challenging task. In this paper, a novel approach to the above problem by making use of elliptic curve cryptography (ECC) is presented. In the proposed scheme, a seed key, which is a distinct point in an elliptic curve, is assigned to each sensor node prior to its deployment. The private key ring for each sensor node is generated using the point doubling mathematical operation over the seed key. When two nodes share a common private key, then a link is established between these two nodes. By suitably choosing the value of the prime field and key ring size, the probability of two nodes sharing the same private key could be increased. The performance is evaluated in terms of connectivity and resilience against node capture. The results show that the performance is better for the proposed scheme with ECC compared to the other basic schemes.