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NONLINEAR MAPS PRESERVING THE MIXED PRODUCT

∗[X ⋄ Y, Z] ON ∗-ALGEBRAS

Raof Ahmad Bhat, Abbas Hussain Shikeh,
and Mohammad Aslam Siddeeque

Abstract. Let A and B be unital prime ∗-algebras such that A contains
a nontrivial projection. In the present paper, we show that if a bijective

map Θ : A → B satisfies Θ(∗[X ⋄ Y, Z]) = ∗[Θ(X) ⋄ Θ(Y ),Θ(Z)] for all

X,Y, Z ∈ A, then Θ or −Θ is a ∗-ring isomorphism. As an application,
we shall characterize such maps in factor von Neumann algebras.

1. Introduction

Throughout the text, by algebra we mean an associative algebra over the
field of complex numbers C. An algebra A is called prime if for any p, q ∈ A,
pAq = {0} implies that either p = 0 or q = 0. The centre of an algebra A is
denoted by Z(A). Let A be a ∗-algebra. For x, y ∈ A, we denote xy + yx by
x◦y, xy−yx by [x, y], xy+yx∗ by x◁y, xy∗−yx by ∗[x, y], xy−yx∗ by [x, y]∗,
xy∗ − yx∗ by [x, y]•, x

∗y + y∗x by x • y, x∗y + yx∗ by x♢y and xy∗ + yx∗ by
x ⋄ y. If A and B are ∗-algebras, then a map Θ : A → B is said to preserve
‘∗’ if Θ(X∗) = Θ(X)∗ for all X ∈ A. Moreover, a map Θ : A → B is called a
∗-isomorphism if it preserves ‘∗’ and is an isomorphism.

In recent years, numerous authors have studied the problems concerning the
characterization of maps on operator algebras that leave certain relations invari-
ant. The most remarkable result in this direction was obtained by Martindale
[12], who proved that ifA is a prime ring containing a nontrivial idempotent and
B is any ring, then a bijective map Φ : A → B satisfying Φ(XY ) = Φ(X)Φ(Y )
for all X,Y ∈ A is necessarily additive. Inspired from this, the problem of
characterizing the maps preserving the products x ◦ y, [x, y], [x, y]∗, [x, y]• and
x • y between rings or operator algebras have received a lot of attention from
various algebraists. For example, Cui and Li [2] proved that a bijective map
preserving the product [x, y]∗ between factor von Neumann algebras is either
a linear ∗-isomorphism or a conjugate linear ∗-isomorphism. This result was
extended to von Neumann algebras by Bai and Du (see [1]). Li et al. [9] showed
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that a bijective map preserving the product x • y between von Neumann alge-
bras with no central abelian projections is sum of a linear ∗-isomorphism and
a conjugate linear ∗-isomorphism. Taghavi et al. [14] proved that a bijective
map preserving the triple product x♢y♢z between prime ∗-algebras is a ∗-ring
isomorphism. Quiet recently, Zang et al. [18] proved that a bijective map pre-
serving the triple product x • y • z between factor von Neumann algebras is a
linear ∗-isomorphism or the negative of a linear ∗-isomorphism, or a conjugate
linear ∗-isomorphism, or the negative of a conjugate linear ∗-isomorphism. For
other results see [1–9,11] and their bibliographic content.

Recently, nonlinear maps preserving the mixed products have received a fair
amount of attention. For instance, Yang and Zhang [17,19] studied the nonlin-
ear maps preserving the mixed products [[x, y], z]∗ and [[x, y]∗, z] on factor von
Neumann algebras. Zhao et al. [21] established that a bijective map preserving
the mixed product [x ◁ y, z] between factor von Neumann algebras is a linear
∗-isomorphism or the negative of a linear ∗-isomorphism, or a conjugate linear
∗-isomorphism, or the negative of a conjugate linear ∗-isomorphism. These
results demonstrate that some new products can completely determine the iso-
morphisms between operator algebras. For other results see [15–17,20,21] and
references therein.

Motivated by the results mentioned above, in this paper, we will investigate
the structure of the nonlinear maps preserving the mixed product ∗[X ⋄ Y, Z]
on prime ∗-algebras.

2. Results

Throughout the text i denotes the imaginary unit. We begin with the fol-
lowing lemma which plays a pivotal role in the proof of our main result.

Lemma 2.1. Let A be a unital ∗-algebra and A,B ∈ A such that AX∗ = XB
for all X ∈ A. Then A = B = 0.

Proof. Suppose AX∗ = XB for all X ∈ A. Taking X = I, we get A = B.
Hence AX∗ = XA for all X ∈ A. Replacing X by iX in the last relation, we
find that AX∗ = −XA for all X ∈ A. Adding the previous two relations, we
get XA = 0 for all X ∈ A. Hence A = 0. □

Now we are ready to state our main result.

Theorem 2.2. Let A and B be unital prime ∗-algebras such that A contains
a nontrivial projection. Suppose that a bijective map Θ : A → B satisfies
Θ(∗[X ⋄ Y,Z]) = ∗[Θ(X) ⋄Θ(Y ),Θ(Z)] for all X,Y, Z ∈ A. Then Θ or −Θ is
a ∗-ring isomorphism.

Proof. Let E1 be a nontrivial projection of A. By the Peirce decomposition
of A with respect to E1, we have A = A11 ⊕ A12 ⊕ A21 ⊕ A22. Note that any
X ∈ A can be written as X = X11 + X12 + X21 + X22, where Xij ∈ Aij for
i, j = 1, 2 and E2 = 1− E1. The proof is organized in the following claims.
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Claim I. Θ(0) = 0.
Since Θ is surjective, there is X ∈ A such that Θ(X) = 0. Hence

Θ(0) = Θ(∗[0 ⋄X, 0]) = ∗[Θ(0) ⋄Θ(X),Θ(0)] = 0.

Claim II. For any X11 ∈ A11, Y12 ∈ A12, Z21 ∈ A21 and X22 ∈ A22, we have

Θ(X11 + Y12 + Z21) = Θ(X11) + Θ(Y12) + Θ(Z21)

and
Θ(Y12 + Z21 +X22) = Θ(Y12) + Θ(Z21) + Θ(X22).

Choose T ∈ A such that Θ(T ) = Θ(X11) + Θ(Y12) + Θ(Z21). Since for any
A22 ∈ A22, X11 ⋄A22 = Z21 ⋄A22 = 0, we have

Θ(∗[A22 ⋄ T,Z]) = ∗[Θ(A22) ⋄Θ(T ),Θ(Z)]

= ∗[Θ(A22) ⋄Θ(X11),Θ(Z)] + ∗[Θ(A22) ⋄Θ(Y12),Θ(Z)]

+ ∗[Θ(A22) ⋄Θ(Z21),Θ(Z)]

= Θ(∗[A22 ⋄ Y12, Z])

for all Z ∈ A. By the injectivity of Θ, we have ∗[A22 ⋄ T,Z] = ∗[A22 ⋄ Y12, Z].
Hence ∗[A22 ⋄ (T − Y12), Z] = 0 for all Z ∈ A. Applying Lemma 2.1, we get
A22 ⋄ (T −Y12) = 0, that is, A22(T

∗−Y ∗
12) = (Y12−T )A∗

22 for every A22 ∈ A22.
Replacing A22 by iA22 in the previous relation, we have −A22(T

∗ − Y ∗
12) =

(Y12 − T )A∗
22 for every A22 ∈ A22. Adding the last two relations, we find that

(T − Y12)A22 = 0 for every A22 ∈ A22. By the primeness of A, we deduce that
TE2 = Y12. Consequently, T22 = 0 and T12 = Y12.

Since ∗[E1 ⋄X11, E1] = ∗[E1 ⋄ Y12, E1] = 0, we have

Θ(∗[E1 ⋄ T,E1]) = ∗[Θ(E1) ⋄Θ(T ),Θ(E1)]

= ∗[Θ(E1) ⋄Θ(X11),Θ(E1)] + ∗[Θ(A22) ⋄Θ(Y12),Θ(E1)]

+ ∗[Θ(E1) ⋄Θ(Z21),Θ(E1)]

= Θ(∗[E1 ⋄ Z21, E1]).

By the injectivity of Θ, we get ∗[E1 ⋄ (T −Z21), Z] = 0. Applying Lemma 2.1,
we have E1 ⋄ (T − Z21) = 0, that is, E1T

∗ + TE1 = Z21 + Z∗
21. Consequently,

T21 = Z21.
Now for any A11 ∈ A, ∗[Y12 ⋄A11, i(E1−E2)] = ∗[Z21 ⋄A11, i(E1−E2)] = 0.

Therefore,

Θ(∗[T ⋄A11, i(E1 − E2)] = ∗[Θ(T ) ⋄Θ(A11),Θ(i(E1 − E2))]

= ∗[Θ(X11) ⋄Θ(A11),Θ(i(E1 − E2))]

+ ∗[Θ(Y12) ⋄Θ(A11),Θ((i(E1 − E2))]

+ ∗[Θ(Z21) ⋄Θ(A11),Θ(i(E1 − E2))]

= Θ(∗[X11 ⋄A11, i(E1 − E2)]).

By the injectivity of Θ, we have ∗[T ⋄A11, i(E1−E2)] = ∗[X11⋄A11, i(E1−E2)],
that is, TA∗

11 +A11T
∗
11 −A11T

∗E2 + T11A
∗
11 +A11T

∗ −E2TA
∗
11 = 2X11A

∗
11 +
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2A11X
∗
11 for every A11 ∈ A11. Replacing A11 by iA11 in the last relation and

adding the two relations, we see that A11(T
∗
11 −X∗

11) = 0 for every A11 ∈ A11.
Consequently, T11 = X11. Analogously one can prove that Θ(Y12+Z21+X22) =
Θ(Y12) + Θ(Z21) + Θ(X22). This proves Claim II.
Claim III. For any Xij ∈ Sij , 1 ≤ i, j ≤ 2, we have

Θ(

2∑
i,j=1

Xij) =

2∑
i,j=1

Θ(Xij).

Since Θ is surjective, there is T ∈ A such that Θ(T ) = Θ(X11) + Θ(X12) +
Θ(X21) + Θ(X22). Now for every A11 ∈ A11, we have ∗[E1 ⋄ X12, A11] =

∗[E1 ⋄X22, A11] = 0. Therefore using Claim II, we find that

Θ(∗[E1 ⋄ T,A11]) = ∗[Θ(E1) ⋄Θ(T ),Θ(A11)]

= ∗[Θ(E1) ⋄Θ(X11),Θ(A11)] + ∗[Θ(E1) ⋄Θ(X12),Θ(A11)]

+ ∗[Θ(E1) ⋄Θ(X21),Θ(A11)] + Θ(∗[E1 ⋄X22,Θ(A11)])

= Θ(∗[E1 ⋄X11, A11]) + Θ(∗[E1 ⋄X21, A11])

= Θ((X11+X∗
11)A

∗
11 −A11(X11 +X∗

11)+X21A
∗
11−A11X

∗
21).

By the injectivity of Θ, we find that

(T ∗
11 + TE1)A

∗
11 −A11(E1T

∗ + T11)(1)

= (X11 +X∗
11 +X21)A

∗
11 −A11(X11 +X∗

11 +X∗
21).

Similarly using iE1 instead of E1 in the above calculation, we see that

(T ∗
11 − TE1)A

∗
11 −A11(E1T

∗ − T11)(2)

= (−X11 +X∗
11 −X21)A

∗
11 −A11(−X11 +X∗

11 +X∗
21).

Replacing A11 by iA11 in the previous two relations, we get

(T ∗
11 + TE1)A

∗
11 +A11(E1T

∗ + T11)(3)

= (X11 +X∗
11 +X21)A

∗
11 +A11(X11 +X∗

11 +X21)

and

(T ∗
11 − TE1)A

∗
11 +A11(E1T

∗ − T11)(4)

= (−X11 +X∗
11 −X21)A

∗
11 +A11(−X11 +X∗

11 +X∗
21),

respectively. Adding (1) and (3), we deduce that T ∗
11+TE1 = X11+X∗

11+X21.
Consequently, T21 = X21 and

T ∗
11 + T11 = X11 +X∗

11.(5)

Also adding (2) and (4), we find that T ∗
11 − TE1 = −X11 +X∗

11 −X21. Hence

T ∗
11 − T11 = X∗

11 −X11.(6)

From (5) and (6), we conclude that T11 = X11. Now, using the same procedure
as above with E2 in place of E1 and A22 in place of A11, we can see that
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T12 = X12 and T22 = X22.
Claim IV. For every Xij , Yij ∈ Aij with i ̸= j, we have

Θ(Xij + Yij) = Θ(Xij) + Θ(Yij).

Since Θ is surjective, given Θ(Xij) + Θ(Yij) ∈ B and Θ(X∗
ij) + Θ(Y ∗

ij) ∈ B,
there exist M,N ∈ A such that

Θ(M) = Θ(Xij) + Θ(Yij) and Θ(N) = Θ(X∗
ij) + Θ(Y ∗

ij).

Now Ei ⋄Xij = 0 and Ei ⋄ Yij = 0. Hence for any A ∈ A, we have

Θ(∗[M ⋄ Ei, A]) = ∗[Θ(M) ⋄Θ(Ei),Θ(A)]

= ∗[Θ(Xij) ⋄Θ(Ei),Θ(A)] + ∗[Θ(Yij) ⋄Θ(Ei),Θ(A)] = 0.

By injectiveness of Θ, we obtain ∗[M ⋄ Ei, A] = 0. Invoking Lemma 2.1, we
get M ⋄ Ei = 0, that is, MEi + EiM

∗ = 0. Similarly using iEi instead of Ei

in the previous calculation, we find that MEi −EiM
∗ = 0. From the last two

relations, we get MEi = 0. Consequently, Mji = Mii = 0. Now, repeating
the above procedure with N in place of M and Ej instead of Ei, one can
see that NEj = 0. Hence Njj = Nij = 0. Therefore, N = Nji + Nii and
M = Mjj +Mij . Now by Claims III and IV, we have

Θ(∗[(Ei +Xij) ⋄ (Ej + Y ∗
ij), Ej ])

= ∗[(Θ(Ei) + Θ(Xij)) ⋄ (Θ(Ej) + Θ(Y ∗
ij)),Θ(Ej)]

= Θ(∗[Ei ⋄ Y ∗
ij , Ej ]) + Θ(∗[Ej ⋄Xij , Ej ])

= Θ(Yij − Y ∗
ij) + Θ(Xij −X∗

ij)

= Θ(Xij) + Θ(Yij)−Θ(Y ∗
ij)−Θ(X∗

ij)

= Θ(Mjj +Mij −Nji −Nii).

Since Θ is injective, we have Xij + Yij −X∗
ij − Y ∗

ij = Mjj +Mij −Nji −Nii.
Consequently, Xij + Yij = Mij and Mjj = 0.
Claim V. For any Xii, Yii ∈ Aii, 1 ≤ i ≤ 2, we have

Θ(Xii + Yii) = Θ(Xii) + Θ(Yii).

Since Θ is surjective, there is T ∈ A such that Θ(T ) = Θ(Xii) + Θ(Yii). Now
since Xii ⋄ Ej = Yii ⋄ Ej = 0 for i ̸= j, we have Θ(∗[T ⋄ Ej , A]) = 0 for any
A ∈ A. In view of injectiveness of Θ and Lemma 2.1, we obtain T ⋄Ej = 0, that
is, TEj +EjT

∗ = 0. Similarly using iEj instead of Ej in the above calculation,
we get TEj −EjT

∗ = 0. Adding the previous two relations, we have TEj = 0.
Consequently, Tij = Tjj = 0.

Now ∗[Xii ⋄Ei, Ej ] = ∗[Yjj ⋄Ei, Ej ] = 0. Therefore Θ(∗[T ⋄Ei, Ej ]) = 0 and
hence ∗[T ⋄Ei, Ej ] = 0, that is, Tji+T ∗

ji = 0. Multiplying the previous relation
by Ei from right, we get Tji = 0. Hence T = Tii.

Next, for any Aji ∈ Aji, we have

Θ(∗[Aji ⋄ T,Ej ]) = Θ(∗[Aji ⋄Xii, Ej ]) + Θ(∗[Aji ⋄ Yii, Ej ])

= Θ(XiiA
∗
ji −AjiX

∗
ii) + Θ(YiiA

∗
ji −AjiY

∗
ii).
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In view of Claims II and IV, and injectivity of Θ it follows that TiiA
∗
ji+AijT

∗
ii =

XiiA
∗
ji−AjiX

∗
ii+YiiA

∗
ji−AjiY

∗
ii for any Aji ∈ Aji. Replacing Aji by iAji in the

last relation and adding the two relations, we find that (Tii−Xii−Yii)AEj = 0
for all A ∈ A. Consequently Tii = Xii + Yii. This proves the claim.
Claim VI. Θ is additive.
Let X =

∑2
i,j=1 Xij and Y =

∑2
i,j=1 Yij . By Claims IV, V and VI, we have

Θ(X + Y ) = Θ(

2∑
i,j=1

(Xij + Yij))

=

2∑
i,j=1

Θ(Xij + Yij)

=

2∑
i,j=1

Θ(Xij) +

2∑
i,j=1

Θ(Yij)

= Θ(

2∑
i,j=1

Xij) + Θ(

2∑
i,j=1

Yij) = Θ(X) + Θ(Y ).

Claim VII. Θ(I)∗ = Θ(I) ∈ Z(B).
Choose X ∈ A such that Θ(X) = IB. Then

2(Θ(I)∗ −Θ(I)) = ∗[Θ(X) ⋄Θ(X),Θ(I)]

= Θ(∗[X ⋄X, I]) = 0.

Hence Θ(I) = Θ(I)∗. Moreover, for any Y ∈ A, we have

∗[Θ(X) ⋄Θ(Y ),Θ(I)] = Θ(∗[X ⋄ Y, I]) = 0.

Thus (Θ(Y )+Θ(Y )∗)Θ(I) = Θ(I)(Θ(Y )+Θ(Y )∗). By surjectiveness of Θ, we
get (Z + Z∗)Θ(I) = Θ(I)(Z + Z∗) for all Z ∈ B. Replacing Z by iZ in the
last relation and adding the two relations, we find that Θ(I) ∈ Z(B).
Claim VIII. Θ(iI)∗ = −Θ(iI) ∈ Z(B) and Θ(iI)2 = −IB.
For any Y ∈ A, we have ∗[Θ(I) ⋄Θ(iI),Θ(Y )] = Θ(∗[I ⋄ iI, Y ]) = 0. In view of
surjectiveness of Θ and Lemma 2.1, it follows that Θ(I) ⋄ Θ(iI) = 0. Conse-
quently, Θ(iI)∗ = −Θ(iI). Now for any X ∈ A, we have

2Θ(X∗ −X) = Θ(∗[I ⋄ I,X]) = ∗[Θ(I) ⋄Θ(I),Θ(X)]

= 2Θ(I)2(Θ(X)∗ −Θ(X)).

Thus Θ preserves symmetric elements in both directions. Now for any A ∈ A
with A∗ = A, we have ∗[Θ(A) ⋄ Θ(iI),Θ(Y )] = Θ(∗[A ⋄ iI, Y ]) = 0 for all
Y ∈ B. Hence Θ(A)⋄Θ(iI) = 0, that is, Θ(A)Θ(iI) = Θ(iI)Θ(A). Clearly any

B ∈ B can be written as B = B1 + iB2, where B1 = B+B∗

2 and B2 = B−B∗

2i .

Therefore, Θ(iI) ∈ Z(B) and hence −4Θ(iI) = Θ(∗[iI ⋄ iI, iI]) = 4Θ(iI)3.
Consequently, Θ(iI)2 = −IB.
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Claim IX. For every A ∈ A, Θ(iA) = ηΘ(iI)Θ(A), where η = 1 or η = −1.
It is easy to see that

−4Θ(iI) = Θ(∗[I ⋄ I, iI]) = ∗[Θ(I) ⋄Θ(I),Θ(iI)] = −4Θ(I)2Θ(iI).

Hence Θ(I)2 = IB. Consequently Θ(I) = IB or Θ(I) = −IB. Note that for
any B∗ = B ∈ A, we have −4Θ(iB) = Θ(∗[B ⋄ I, iI]) = ∗[Θ(B)⋄Θ(I),Θ(iI)] =
−4Θ(I)Θ(iI)Θ(B). Hence Θ(iB) = ηΘ(iI)Θ(B), where η = 1 or η = −1. Now
any A ∈ A can be written as A = A1 + iA2, where A∗

k = Ak ∈ A, k = 1, 2, we
have

Θ(iA) = Θ(iA1 −A2)

= ηΘ(iI)Θ(A1)−Θ(A2)

= ηΘ(iI)(Θ(A1) + ηΘ(iI)Θ(A2))

= ηΘ(iI)Θ(A).

Hence Θ(iA) = ηΘ(iI)Θ(A) for all A ∈ A.
Claim X. Θ preserves ‘∗’.
Any A ∈ A can be written as A = A1 + iA2, where A∗

k = Ak ∈ A, k = 1, 2.
Hence by Claim IX, we have

Θ(A)∗ = Θ(A1 + iA2)
∗

= (Θ(A1) + ηΘ(iI)Θ(A2))
∗

= Θ(A1)− ηΘ(iI)Θ(A2)

= Θ(A1 − iA2) = Θ(A∗).

Thus Θ preserves ‘∗’.
Claim XI. Θ or −Θ is a ∗-ring isomorphism.
Define the map ∆ : A → B such that ∆(X) = ηΘ(X). Then it can be easily
verified that ∆ is an additive bijection with ∆(iX) = ∆(iI)∆(X), ∆(iI) ∈
Z(B) and satisfies ∆(∗[X ⋄ Y,Z]) = ∗[∆(X) ⋄∆(Y ),∆(Z)] for all X,Y, Z ∈ A.
Moreover, ∆ preserves ‘∗’. Hence for any X,Y ∈ A, we have

−2∆(iI)∆(X ⋄ Y ) = ∆(∗[X ⋄ Y, iI])
= ∗[∆(X) ⋄∆(Y ),∆(iI)]

= −2∆(iI)∆(X) ⋄∆(Y ).

Therefore,

∆(XY ∗ + Y X∗) = ∆(X)∆(Y ∗) + ∆(Y )∆(X∗).(7)

Also,

∆(iI)∆(XY ∗ − Y X∗) = ∆((iX)Y ∗ + Y (iX)∗)

= ∆((iX)∆(Y )∗ +∆(Y )∆(iX)∗)

= ∆(iI)(∆(X)∆(Y )∗ −∆(Y )∆(X)∗).
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Thus,

∆(XY ∗ − Y X∗) = ∆(X)∆(Y ∗)−∆(Y )∆(X∗)(8)

for all X,Y ∈ A. From (7) and (8), we conclude that ∆(XY ∗) = ∆(X)∆(Y ∗)
for all X,Y ∈ A. Therefore ∆(XY ) = ∆(X)∆(Y ) for all X,Y ∈ A and hence
Θ or −Θ is a ∗-ring isomorphism. This completes the proof. □

By the similar method, we can prove the following theorem.

Theorem 2.3. Let A and B be unital prime ∗-algebras such that A contains
a nontrivial projection. Suppose that a bijective map Θ : A → B satisfies
Θ(∗[X • Y,Z]) = ∗[Θ(X) •Θ(Y ),Θ(Z)] for all X,Y, Z ∈ A. Then Θ or −Θ is
a ∗-ring isomorphism.

A von Neumann algebra N is a weakly closed self-adjoint algebra of opera-
tors on a Hilbert space H containing the identity operator. Note that N is a
factor von Neumann algebra if its center contains only the scalar operators. It
is well-known that a factor von Neumann algebra is a prime algebra.

Li et al. [10, Theorem 2.5] showed that ifN1 andN2 are factor von Neumann
algebras with dim(N1) ≥ 2 and if Θ : N1 → N1 is a bijective map satisfying
Θ([X ◁Y,Z]∗) = [Θ(X) ◁Θ(Y ),Θ(Z)]∗ for all X,Y, Z ∈ N . Then Θ is a linear
∗-isomorphism or the negative of a linear ∗-isomorphism, or a conjugate linear
∗-isomorphism, or the negative of a conjugate linear ∗-isomorphism. Analo-
gously, as a corollary of Theorem 2.2, we characterize nonlinear bijective maps
preserving the mixed product ∗[X ⋄Y,Z] on factor von Neumann algebras given
as below.

Corollary 2.4. Let N1 and N2 be two factor von Neumann algebras with
dim(N1) ≥ 2. Suppose that a bijective map Θ : N1 → N1 satisfies Θ(∗[X ⋄
Y,Z]) = ∗[Θ(X) ⋄ Θ(Y ),Θ(Z)] for all X,Y, Z ∈ N . Then Θ is a linear ∗-
isomorphism or the negative of a linear ∗-isomorphism, or a conjugate linear
∗-isomorphism, or the negative of a conjugate linear ∗-isomorphism.

Proof. By Theorem 2.2, Θ or −Θ is a ∗-ring isomorphism. It is easy to show
that Θ or −Θ is a map preserving absolute value. Now, by Theorem 2.5 of [13],
the desired conclusion holds.

□

References

[1] Z. Bai and S. Du, Maps preserving products XY − Y X∗ on von Neumann algebras,
J. Math. Anal. Appl. 386 (2012), no. 1, 103–109. https://doi.org/10.1016/j.jmaa.
2011.07.052

[2] J. Cui and C.-K. Li, Maps preserving product XY − Y X∗ on factor von Neumann
algebras, Linear Algebra Appl. 431 (2009), no. 5-7, 833–842. https://doi.org/10.1016/

j.laa.2009.03.036

[3] L. Dai and F. Lu, Nonlinear maps preserving Jordan ∗-products, J. Math. Anal. Appl.

409 (2014), no. 1, 180–188. https://doi.org/10.1016/j.jmaa.2013.07.019

https://doi.org/10.1016/j.jmaa.2011.07.052
https://doi.org/10.1016/j.jmaa.2011.07.052
https://doi.org/10.1016/j.laa.2009.03.036
https://doi.org/10.1016/j.laa.2009.03.036
https://doi.org/10.1016/j.jmaa.2013.07.019


NONLINEAR MAPS PRESERVING THE MIXED PRODUCT 1027

[4] D. Huo, B. Zheng, and H. Liu, Nonlinear maps preserving Jordan triple η-∗-products,
J. Math. Anal. Appl. 430 (2015), no. 2, 830–844. https://doi.org/10.1016/j.jmaa.

2015.05.021

[5] C. Li, Q. Chen, and T. Wang, Nonlinear maps preserving the Jordan triple ∗-product
on factor von Neumann algebras, Chinese Ann. Math. Ser. B 39 (2018), no. 4, 633–642.
https://doi.org/10.1007/s11401-018-0086-4

[6] C. Li and F. Lu, Nonlinear maps preserving the Jordan triple 1-∗-product on von

Neumann algebras, Complex Anal. Oper. Theory 11 (2017), no. 1, 109–117. https:
//doi.org/10.1007/s11785-016-0575-y

[7] C. Li, F. Lu, and X. Fang, Nonlinear mappings preserving product XY +Y X∗ on factor

von Neumann algebras, Linear Algebra Appl. 438 (2013), no. 5, 2339–2345. https:

//doi.org/10.1016/j.laa.2012.10.015

[8] C. Li, F. Lu, and T. Wang, Nonlinear maps preserving the Jordan triple ∗-product on

von Neumann algebras, Ann. Funct. Anal. 7 (2016), no. 3, 496–507. https://doi.org/
10.1215/20088752-3624940

[9] C. Li, F. Zhao, and Q. Chen, Nonlinear maps preserving product X∗Y + Y ∗X on

von Neumann algebras, Bull. Iranian Math. Soc. 44 (2018), no. 3, 729–738. https:

//doi.org/10.1007/s41980-018-0048-3

[10] C. Li, Y. Zhao, and F. Zhao, Nonlinear maps preserving the mixed product [A •B,C]∗
on von Neumann algebras, Filomat 35 (2021), no. 8, 2775–2781. https://doi.org/10.

2298/fil2108775l

[11] L. Liu and G. X. Ji, Maps preserving product X∗Y + Y X∗ on factor von Neumann
algebras, Linear Multilinear Algebra 59 (2011), no. 9, 951–955. https://doi.org/10.

1080/03081087.2010.495390

[12] W. S. Martindale, When are multiplicative mappings additive?, Proc. Amer. Math. Soc.
21 (1969), 695–698. https://doi.org/10.2307/2036449

[13] A. Taghavi, Additive mappings on C∗-algebras preserving absolute values, Linear Mul-

tilinear Algebra 60 (2012), no. 1, 33–38. https://doi.org/10.1080/03081087.2010.

533271

[14] A. Taghavi, M. Razeghi, M. Nouri, and V. Darvish, Maps preserving triple product

A∗B+BA∗ on ∗-algebras, Asian-Eur. J. Math. 12 (2019), no. 3, 1950038, 13 pp. https:
//doi.org/10.1142/S1793557119500384

[15] A. Taghavi and E. Tavakoli, Additivity of maps preserving Jordan triple products on

prime C∗-algebras, Ann. Funct. Anal. 11 (2020), no. 2, 391–405. https://doi.org/10.
1007/s43034-019-00009-0

[16] Z. Yang and J. Zhang, Nonlinear maps preserving mixed Lie triple products on factor
von Neumann algebras, Ann. Funct. Anal. 10 (2019), no. 3, 325–336. https://doi.org/

10.1215/20088752-2018-0032

[17] Z. Yang and J. Zhang, Nonlinear maps preserving the second mixed Lie triple products
on factor von Neumann algebras, Linear Multilinear Algebra 68 (2020), no. 2, 377–390.

https://doi.org/10.1080/03081087.2018.1506732

[18] D. Zhang, C. Li, and Y. Zhao, Nonlinear maps preserving bi-skew Jordan triple product
on factor von Neumann algebras, Period. Math. Hungar. 86 (2023), no. 2, 578–586.

https://doi.org/10.1007/s10998-022-00492-4

[19] J. H. Zhang and F. J. Zhang, Nonlinear maps preserving Lie products on factor von
Neumann algebras, Linear Algebra Appl. 429 (2008), no. 1, 18–30. https://doi.org/

10.1016/j.laa.2008.01.031

[20] F. Zhao and C. Li, Nonlinear maps preserving the Jordan triple ∗-product between
factors, Indag. Math. (N.S.) 29 (2018), no. 2, 619–627. https://doi.org/10.1016/j.

indag.2017.10.010

https://doi.org/10.1016/j.jmaa.2015.05.021
https://doi.org/10.1016/j.jmaa.2015.05.021
https://doi.org/10.1007/s11401-018-0086-4
https://doi.org/10.1007/s11785-016-0575-y
https://doi.org/10.1007/s11785-016-0575-y
https://doi.org/10.1016/j.laa.2012.10.015
https://doi.org/10.1016/j.laa.2012.10.015
https://doi.org/10.1215/20088752-3624940
https://doi.org/10.1215/20088752-3624940
https://doi.org/10.1007/s41980-018-0048-3
https://doi.org/10.1007/s41980-018-0048-3
https://doi.org/10.2298/fil2108775l
https://doi.org/10.2298/fil2108775l
https://doi.org/10.1080/03081087.2010.495390
https://doi.org/10.1080/03081087.2010.495390
https://doi.org/10.2307/2036449
https://doi.org/10.1080/03081087.2010.533271
https://doi.org/10.1080/03081087.2010.533271
https://doi.org/10.1142/S1793557119500384
https://doi.org/10.1142/S1793557119500384
https://doi.org/10.1007/s43034-019-00009-0
https://doi.org/10.1007/s43034-019-00009-0
https://doi.org/10.1215/20088752-2018-0032
https://doi.org/10.1215/20088752-2018-0032
https://doi.org/10.1080/03081087.2018.1506732
https://doi.org/10.1007/s10998-022-00492-4
https://doi.org/10.1016/j.laa.2008.01.031
https://doi.org/10.1016/j.laa.2008.01.031
https://doi.org/10.1016/j.indag.2017.10.010
https://doi.org/10.1016/j.indag.2017.10.010


1028 R. A. BHAT, A. H. SHIKEH, AND M. A. SIDDEEQUE

[21] Y. Zhao, C. Li, and Q. Chen, Nonlinear maps preserving mixed product on factors, Bull.

Iranian Math. Soc. 47 (2021), no. 5, 1325–1335. https://doi.org/10.1007/s41980-

020-00444-z

Raof Ahmad Bhat

Department of Mathematics

Aligarh Muslim University
Aligarh 202002, India

Email address: raofbhat1211@gmail.com

Abbas Hussain Shikeh

Department of Mathematics

Aligarh Muslim University
Aligarh 202002, India

Email address: abbasnabi94@gmail.com

Mohammad Aslam Siddeeque

Department of Mathematics

Aligarh Muslim University
Aligarh 202002, India

Email address: aslamsiddeeque@gmail.com

https://doi.org/10.1007/s41980-020-00444-z
https://doi.org/10.1007/s41980-020-00444-z

