• Title/Summary/Keyword: Prime Ideal Theorem

Search Result 28, Processing Time 0.028 seconds

MORE ON THE 2-PRIME IDEALS OF COMMUTATIVE RINGS

  • Nikandish, Reza;Nikmehr, Mohammad Javad;Yassine, Ali
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.1
    • /
    • pp.117-126
    • /
    • 2020
  • Let R be a commutative ring with identity. A proper ideal I of R is called 2-prime if for all a, b ∈ R such that ab ∈ I, then either a2 or b2 lies in I. In this paper, we study 2-prime ideals which are generalization of prime ideals. Our study provides an analogous to the prime avoidance theorem and some applications of this theorem. Also, it is shown that if R is a PID, then the families of primary ideals and 2-prime ideals of R are identical. Moreover, a number of examples concerning 2-prime ideals are given. Finally, rings in which every 2-prime ideal is a prime ideal are investigated.

ASSOCIATED PRIME IDEALS OF A PRINCIPAL IDEAL

  • Chang, Gyu Whan
    • Korean Journal of Mathematics
    • /
    • v.8 no.1
    • /
    • pp.87-90
    • /
    • 2000
  • Let R be an integral domain with identity. We show that each associated prime ideal of a principal ideal in R[X] has height one if and only if each associated prime ideal of a principal ideal in R has height one and R is an S-domain.

  • PDF

ON LI-IDEALS AND PRIME LI-IDEALS OF LATTICE IMPLICATION ALGEBRAS

  • Jun, Young-Bae
    • Journal of the Korean Mathematical Society
    • /
    • v.36 no.2
    • /
    • pp.369-380
    • /
    • 1999
  • As a continuation of the paper [3], in this paper we investigate the further properties on LI-ideals, and show that how to generate an LI-ideal by both and LI-ideal and an element. We define a prime LI-ideal, and give an equivalent condition for a proper LI-ideal to be prime. Using this result, we establish the extension property and prime LI-ideal theorem.

  • PDF

ON L-FUZZY SEMI-PRIME IDEALS OF A POSET AND SEPARATION THEOREMS

  • Engidaw, Derso Abeje;Alemu, Tilahun Bimerew
    • Korean Journal of Mathematics
    • /
    • v.29 no.2
    • /
    • pp.305-320
    • /
    • 2021
  • In this paper, the relations between L-fuzzy semi-prime (respectively, L-fuzzy prime) ideals of a poset and L-fuzzy semi-prime (respectively, L-fuzzy prime) ideals of the lattice of all ideals of a poset are established. A result analogous to Separation Theorem is obtained using L-fuzzy semi-prime ideals.

Pseudo valuation domains

  • Cho, Yong-Hwan
    • Communications of the Korean Mathematical Society
    • /
    • v.11 no.2
    • /
    • pp.281-284
    • /
    • 1996
  • In this paper we characterize strongly prime ideals and prove a theorem: an integral domain R is a PVD if and only if every maximal ideal M of R is strongly prime.

  • PDF

ANNIHILATORS OF SUBTRACTION ALGEBRAS

  • JUN, YOUNG BAE
    • Honam Mathematical Journal
    • /
    • v.27 no.3
    • /
    • pp.333-341
    • /
    • 2005
  • A characterization of prime ideals is discussed. A relation between prime ideals and ideals of the form $A_w^{\wedge}$ is given. The prime ideal theorem is established. The notion of annihilators is introduced, and basic properties are investigated.

  • PDF

THE COHEN TYPE THEOREM FOR S-⁎ω-PRINCIPAL IDEAL DOMAINS

  • Lim, Jung Wook
    • East Asian mathematical journal
    • /
    • v.34 no.5
    • /
    • pp.571-575
    • /
    • 2018
  • Let D be an integral domain, ${\ast}$ a star-operation on D, and S a (not necessarily saturated) multiplicative subset of D. In this article, we prove the Cohen type theorem for $S-{\ast}_{\omega}$-principal ideal domains, which states that D is an $S-{\ast}_{\omega}$-principal ideal domain if and only if every nonzero prime ideal of D (disjoint from S) is $S-{\ast}_{\omega}$-principal.

Posner's First Theorem for *-ideals in Prime Rings with Involution

  • Ashraf, Mohammad;Siddeeque, Mohammad Aslam
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.2
    • /
    • pp.343-347
    • /
    • 2016
  • Posner's first theorem states that if R is a prime ring of characteristic different from two, $d_1$ and $d_2$ are derivations on R such that the iterate $d_1d_2$ is also a derivation of R, then at least one of $d_1$, $d_2$ is zero. In the present paper we extend this result to *-prime rings of characteristic different from two.

PRIME FACTORIZATION OF IDEALS IN COMMUTATIVE RINGS, WITH A FOCUS ON KRULL RINGS

  • Gyu Whan Chang;Jun Seok Oh
    • Journal of the Korean Mathematical Society
    • /
    • v.60 no.2
    • /
    • pp.407-464
    • /
    • 2023
  • Let R be a commutative ring with identity. The structure theorem says that R is a PIR (resp., UFR, general ZPI-ring, π-ring) if and only if R is a finite direct product of PIDs (resp., UFDs, Dedekind domains, π-domains) and special primary rings. All of these four types of integral domains are Krull domains, so motivated by the structure theorem, we study the prime factorization of ideals in a ring that is a finite direct product of Krull domains and special primary rings. Such a ring will be called a general Krull ring. It is known that Krull domains can be characterized by the star operations v or t as follows: An integral domain R is a Krull domain if and only if every nonzero proper principal ideal of R can be written as a finite v- or t-product of prime ideals. However, this is not true for general Krull rings. In this paper, we introduce a new star operation u on R, so that R is a general Krull ring if and only if every proper principal ideal of R can be written as a finite u-product of prime ideals. We also study several ring-theoretic properties of general Krull rings including Kaplansky-type theorem, Mori-Nagata theorem, Nagata rings, and Noetherian property.

ON THE IDEAL CLASS GROUPS OF ℤp-EXTENSIONS OVER REAL ABELIAN FIELDS

  • Kim, Jae Moon;Ryu, Ja Do
    • Korean Journal of Mathematics
    • /
    • v.7 no.2
    • /
    • pp.227-233
    • /
    • 1999
  • Let $k$ be a real abelian field and $k_{\infty}={\bigcup}_{n{\geq}0}k_n$ be its $\mathbb{Z}_p$-extension for an odd prime $p$. For each $n{\geq}0$, we denote the class number of $k_n$ by $h_n$. The following is a well known theorem: Theorem. Suppose $p$ remains inert in $k$ and the prime ideal of $k$ above $p$ totally ramifies in $k_{\infty}$. Then $p{\nmid}h_0$ if and only if $p{\nmid}h_n$ for all $n{\geq}0$. The aim of this paper is to generalize above theorem: Theorem 1. Suppose $H^1(G_n,E_n){\simeq}(\mathbb{Z}/p^n\mathbb{Z})^l$, where $l$ is the number of prime ideals of $k$ above $p$. Then $p{\nmid}h_0$ if and only if $p{\nmid}h_n$. Theorem 2. Let $k$ be a real quadratic field. Suppose that $H^1(G_1,E_1){\simeq}(\mathbb{Z}/p\mathbb{Z})^l$. Then $p{\nmid}h_0$ if and only if $p{\nmid}h_n$ for all $n{\geq}0$.

  • PDF