MORE ON THE 2-PRIME IDEALS OF COMMUTATIVE RINGS

Reza Nikandish, Mohammad Javad Nikmehr, and Ali Yassine

Abstract

Let R be a commutative ring with identity. A proper ideal I of R is called 2-prime if for all $a, b \in R$ such that $a b \in I$, then either a^{2} or b^{2} lies in I. In this paper, we study 2-prime ideals which are generalization of prime ideals. Our study provides an analogous to the prime avoidance theorem and some applications of this theorem. Also, it is shown that if R is a PID, then the families of primary ideals and 2-prime ideals of R are identical. Moreover, a number of examples concerning 2-prime ideals are given. Finally, rings in which every 2 -prime ideal is a prime ideal are investigated.

1. Introduction

We assume throughout this paper that all rings are commutative with identity. Let R be a ring and I be an ideal of R. The set of nilpotent elements of R, the set of zero-divisors of R, the set of minimal prime ideal of I, extension and contraction of I under ring homomorphism are denoted by $\operatorname{Nil}(R), Z(R)$, $\operatorname{Min}_{R}(I), I^{e}$ and J^{c}, respectively. By a proper ideal I of R we mean an ideal with $I \neq R$. For any undefined notation or terminology in commutative ring theory, we refer the reader to [8].

Prime ideals play a central role in commutative ring theory and so this notion has been generalized and studied in several directions. The importance of some of these generalizations is same as the prime ideals, say primary ideals. In a sense they determine how far an ideal is from being prime. For instance, in 1978, Hedstrom and Houston [6] defined the strongly prime ideal, that is a proper ideal P of R such that for $a, b \in K$ with $a b \in P$, either $a \in P$ or $b \in P$ where K is the quotient field of R. In 2003, Anderson and Smith [1] introduced the notion of a weakly prime ideal, i.e., a proper ideal P of R with the property that for $a, b \in R, 0 \neq a b \in P$ implies $a \in P$ or $b \in P$. So a prime ideal is weakly prime. In 2005, Bhatwadekar and Sharma [4] introduced the notion of almost prime ideal which is also a generalization of prime ideal. A proper ideal I of an integral domain R is said to be almost prime if for $a, b \in R$

[^0]with $a b \in I \backslash I^{2}$, then either $a \in I$ or $b \in I$, and it is clear that every weakly prime ideal is an almost prime ideal. The notion of 2 -absorbing ideals were introduced and investigated in 2007 by Badawi [2]. A nonzero proper ideal I of R is called a 2-absorbing ideal if whenever $a, b, c \in R$ and $a b c \in I$, then $a b \in I$ or $a c \in I$ or $b c \in I$. This paper is in this theme and it is devoted to study a generalization of prime ideals so called 2-prime ideals.

A proper ideal I of R is said to be 2 -prime if whenever $a, b \in R$ and $a b \in I$, then either a^{2} or b^{2} lies in I. The concept of 2-prime ideals was first introduced and studied by Beddani and Messirdi in [3] and they uses it to present certain characterization of valuation rings. Clearly, every prime ideal is a 2-prime ideal. However, the converse is not true. For example, $9 \mathbb{Z}$ is a 2 -prime ideal of R, but it is not prime. For nontrivial 2-prime ideals see Example 2.7.

In Section 2, we classify 2-prime ideals of a PID and we show that the families of primary ideals and 2-prime ideals in a PID are identical (Theorem 2.3). In Proposition 2.4, we give some basic properties of 2-prime ideals. It is easily proved that if J and K are 2-prime ideals of R, then $J \cap K$ and $J K$ need not be a 2 -prime ideal of R. By using the technique of efficient covering of ideals, In Theorem 2.9, we prove the 2-prime avoidance theorem for ideals. In Section 3, we investigate all rings in which every 2-prime ideal is prime, i.e., $2-P$ rings. In Theorem 3.4 we show that if (R, M) is a quasi-local ring, then R is a 2-P ring if and only if $I M=P$, for every minimal prime ideal P over an arbitrary 2-prime ideal I. Finally, it is proved that if (R, M) is a quasi-local ring and $I \in 2-\operatorname{Min}_{R}\left(P^{2}\right)$, for every P-2-prime ideal I, then R is a $2-P$ ring if and only if $I=P$, for every ideal $I \in 2-\operatorname{Min}_{R}\left(P^{2}\right)$ such that $I \subseteq P$ (Corollary 3.8).

2. The 2-prime avoidance theorem

In this section, we study some basic properties of 2 -prime ideals and we prove the 2 -prime avoidance theorem.

Definition 2.1. Let R be a ring. A proper ideal I of R is called 2-prime if for all $a, b \in R$ such that $a b \in I$, then either a^{2} or b^{2} lies in I.

Recall that a proper ideal I of R is called a semiprimary if whenever $a, b \in R$ and $a b \in I$, we have $a \in \sqrt{I}$ or $b \in \sqrt{I}$. Clearly, every 2-prime ideal is a semiprimary ideal of R. It is worth mentioning that if I is a semiprimary ideal of R, then I need not be a 2-prime ideal of R (see the following example).
Example 2.2. Suppose that $R=K[x, y, z]$ is the ring of polynomials over K in indeterminates x, y, z, where K is a field. It follows from [8, Exercice 4.28] that $\sqrt{\left(x^{3}, x y, y^{3}\right)}$ is a prime ideal of R, and so $\left(x^{3}, x y, y^{3}\right)$ is a semiprimary ideal of R. But $\left(x^{3}, x y, y^{3}\right)$ is not 2-prime since $x y \in\left(x^{3}, x y, y^{3}\right)$ and $x^{2} \notin\left(x^{3}, x y, y^{3}\right)$ and $y^{2} \notin\left(x^{3}, x y, y^{3}\right)$.

In the following theorem, one may see that in a PID every semiprimary ideal of R is 2 -prime.

Theorem 2.3. Let R be a principal ideal domain and I be an ideal of R. Then the following statements are equivalent.
(1) I is a semiprimary ideal of R.
(2) I is a 2-prime ideal of R.
(3) I is a primary ideal of R.

Proof. (1) $\Leftrightarrow(3)$ Let I be a semiprime ideal of R. Since R is a PID and every prime ideal is maximal, it is known that every semiprimary ideal of R is primary.
$(2) \Leftrightarrow(3)$ We show that I is a 2-prime ideal of R if and only if either $I=\left(p^{n}\right)$, for some positive integer n and an irreducible element p of R or $p=0$, and so the result follows from [8, Example 4.10]. Suppose that I is a non-zero 2-prime ideal of R. Since R is a principal ideal domain, there exists $r \in R$ such that $I=(r)$. If r is irreducible, then $n=1$ and we are done. Suppose that r is not an irreducible element. Since R is a unique factorization, r can be expressed in the form

$$
r=p_{1}^{n_{1}} p_{2}^{n_{2}} \cdots p_{m}^{n_{m}}
$$

where $m, n_{1}, n_{2}, \ldots, n_{m}$ are positive integers and p_{i} 's are irreducible elements of R such that p_{i} and p_{j} are not associates, if $i \neq j$. Let $a=p_{1}^{n_{1}}$ and $b=$ $p_{2}^{n_{2}} \cdots p_{m}^{n_{m}}$. Then $a b \in I$. Since I is 2-prime, either $a^{2} \in I$ or $b^{2} \in I$.

If $a^{2}=p_{1}^{2 n_{1}} \in I=(r)$, then there exists $x \in R$ such that

$$
a^{2}=p_{1}^{2 n_{1}}=x r=x p_{1}^{n_{1}} p_{2}^{n_{2}} \cdots p_{m}^{n_{m}}, \text { and so } p_{1}^{n_{1}}=x p_{2}^{n_{2}} \cdots p_{m}^{n_{m}}
$$

which implies that $p_{j} \mid p_{1}$ for some $2 \leq j \leq m$. Since p_{1} is an irreducible element of R, we conclude that p_{1} and p_{j} are associates, a contradiction.

If $b^{2}=\left(p_{2}^{n_{2}} \cdots p_{m}^{n_{m}}\right)^{2} \in I=(r)$, then there exists $s \in R$ such that

$$
\left(p_{2}^{n_{2}} \cdots p_{m}^{n_{m}}\right)^{2}=s r=s p_{1}^{n_{1}} p_{2}^{n_{2}} \cdots p_{m}^{n_{m}}
$$

which implies that $p_{1} \mid\left(p_{2}^{n_{2}} \cdots p_{m}^{n_{m}}\right)^{2}$. Since R is a principal ideal domain, $p_{1} \mid p_{j}$, for some $2 \leq j \leq m$, a contradiction.

Conversely, suppose that $I=\left(p^{n}\right)$, for some irreducible element $p \in R$ and a positive integer n. Assume $a, b \in R$ and $a b \in I$. Then $a=c p^{k}$ and $b=v p^{i}$ for some $c, v \in R$ such that $i+k \geq n$. Assume that $2 k<n$ and $2 i<n$. Then $2 k+2 i<2 n$, a contradiction since $i+k \geq n$. Thus $a^{2} \in I$ or $b^{2} \in I$, and so I is 2 -prime.

In the following proposition, we present some basic properties of 2-prime ideals.

Proposition 2.4. Suppose that I is an ideal of R. Then the following statements hold:
(1) If I is a 2-prime ideal of R, then $P:=\sqrt{I}$ is a prime ideal of R, and we say that I is P-2-prime. Furthermore, P is the smallest prime ideal of R
which contains I, in that every prime ideal of R which contains I must also contain P.
(2) Let P be a prime ideal of R. Then P^{2} is a 2-prime ideal of R.
(3) Let $f: K \rightarrow R$ be a homomorphism of rings. If f is epimorphism and J is a 2-prime ideal of K containing $\operatorname{ker}(f)$, then $f(J)$ is a 2-prime ideal of R.
(4) Let S be a multiplicatively closed subset of R and $f: R \rightarrow S^{-1} R$ denote the natural ring homomorphism. Then the following statements hod:
(i) If I is a P-2-prime ideal of R such that $I \cap S=\emptyset, f$ is an epimorphism and I containing $\operatorname{ker}(f)$, then $I^{e}:=f(I)^{-1} R$ is a $P^{e}-2$-prime ideal of $S^{-1} R$. Furthermore, if $S^{-1} I$ is 2-prime and $S \cap Z_{R}(R / I)=\emptyset$, then I is 2-prime.
(ii) If J is a P-2-prime ideal of $S^{-1} R$, then $J^{c}=f^{-1}(J)$ is a $P^{c}-2$-prime ideal of R such that $J^{c} \cap S=\emptyset$.
(5) Let R_{1} and R_{2} be rings, and let R be the direct product ring $R=R_{1} \times R_{2}$. Then I_{1} (resp. I_{2}) is a 2-prime ideal of $R_{1}\left(\right.$ resp. $\left.R_{2}\right)$ if and only if $I_{1} \times R_{2}$ (resp. $R_{1} \times I_{2}$) is a 2-prime ideal of R.
(6) If I is P-2-prime, and $a \in R \backslash P$, then $\left(I: a^{2}\right)$ is P-2-prime. In particular, $P=\sqrt{\left(I: a^{2}\right)}$.
(7) If I is irreducible and $(I: x)=\left(I: x^{2}\right)$ for every $x \in R \backslash I$, then I is 2-prime.

Proof. (1) It is clear since every 2-prime ideal is a semipimary ideal of R.
(2) It is clear, as $P^{2} \subseteq P$.
(3) Let $x, y \in R$ and $x y \in f(J)$. Since f is surjective, there are $a, b \in K$ such that $x=f(a)$ and $y=f(b)$. Thus $x y=f(a b) \in f(J)$. This means that there is $q \in J$ such that $f(a b)=f(q)$. In other words $a b-q \in \operatorname{ker} f$. Since kerf $\subseteq J$, we see that both of $a b-q$ and q are contained in J, and therefore $a b=(a b-q)+q \in J$. But J is a 2-prime ideal, so either $a^{2} \in I$ or $b^{2} \in I$ and consequently either $f\left(a^{2}\right)=x^{2} \in f(I)$ or $f\left(b^{2}\right)=y^{2} \in f(J)$. The proof is complete.
(4) (i) Since $I \cap S=\emptyset$, we conclude that $I^{e} \neq S^{-1} R$. Thus I^{e} is a proper ideal of $S^{-1} R$. By [8, Lemma 5.24] and [8, Lemma 5.31], $I^{e} \unlhd S^{-1} R$ and $\sqrt{I^{e}}$ $=(\sqrt{I})^{e}=P^{e}$. Let $x, y \in S^{-1} R$ and $x y \in I^{e}$. Then $x=\frac{a}{s_{1}}$ and $y=\frac{b}{s_{2}}$, for some $a, b \in R, s_{1}, s_{2} \in S$, and $\frac{a b}{s_{1} s_{2}} \in I^{e}$. Hence there exist $c \in f(I)$ and $r \in S$ such that $\frac{a b}{s_{1} s_{2}}=\frac{c}{r}$. Thus $t\left(a b r-c s_{1} s_{2}\right)=0$, for some $t \in S$. We observe that $(t a)(r b) \in f(I)$. Since I is a 2 -prime ideal of R, it is clear by part (3), $f(I)$ is also a 2-prime ideal of $S^{-1} R$, and we obtain $(t a)^{2} \in f(I)$ or $(r b)^{2} \in$ $f(I)$. If $(t a)^{2} \in f(I)$, then $x^{2}=\left(\frac{a}{s_{1}}\right)^{2}=\frac{t^{2} a^{2}}{\left(t s_{1}\right)^{2}} \in I^{e}$, and if $(r b)^{2} \in f(I)$, then $y^{2}=\left(\frac{b}{s_{2}}\right)^{2}=\frac{r^{2} b^{2}}{\left(r s_{1}\right)^{2}} \in I^{e}$. Thus I^{e} is a $P^{e}-2$-prime ideal of $S^{-1} R$. Now, assume that $a, b \in R$ and $a b \in I$. Then $a b / 1 \in S^{-1} I$. Since $S^{-1} I$ is 2-prime, either $a^{2} / 1 \in S^{-1} I$ or $b^{2} / 1 \in S^{-1} I$. If $a^{2} / 1 \in S^{-1} I$, then there exists $s \in S$ such that $s a^{2} \in I$. Since $S \cap Z_{R}(R / I)=\emptyset$, we conclude that $a^{2} \in I$. The case $b^{2} / 1 \in$ $S^{-1} I$ is similar. Thus $S^{-1} I$ is 2-prime.
(ii) It is an immediate consequent from part (3) of [3, Proposition 1.3] and [8, Exercise 2.43] that J^{c} is $P^{c}-2$-prime.
$(5) \Rightarrow)$ Suppose that I_{1} is a 2-prime ideal of R_{1}. Let $(a, b)(c, d) \in I_{1} \times R_{2}$ for some $(a, b),(c, d) \in R$. Then $a c \in I_{1}$. Since I_{1} is 2-prime, either $a^{2} \in I_{1}$ or $c^{2} \in I_{1}$. Hence either $(a, b)^{2} \in I_{1} \times R_{2}$ or $(c, d)^{2} \in I_{1} \times R_{2}$. Thus $I_{1} \times R_{2}$ is a 2-prime ideal of R.
$\Leftarrow)$ Let $I_{1} \times R_{2}$ be a 2-prime ideal of R, and let $a b \in I_{1}$ for some $a, b \in$ R_{1}. Then $(a, 1)(b, 1) \in I_{1} \times R_{2}$. Hence $(a, 1)^{2} \in I_{1} \times R_{2}$ or $(b, 1)^{2} \in I_{1} \times R_{2}$. Therefore $a^{2} \in I_{1}$ or $b^{2} \in I_{1}$. Thus I_{1} is a 2 -prime ideal of R_{1}.
(6) Let $b \in\left(I: a^{2}\right)$. Then $b a^{2} \in I$ and $a \notin P$. Since I is a P-2-prime ideal, we get $b^{2} \in I$ and hence $b \in \sqrt{I}=P$. Thus $I \subseteq\left(I: a^{2}\right) \subseteq P$ and so

$$
P=\sqrt{I} \subseteq \sqrt{\left(I: a^{2}\right)} \subseteq \sqrt{P}=P
$$

Hence $\sqrt{\left(I: a^{2}\right)} \subseteq \sqrt{P}=P \subset R$. This also means that $\left(I: a^{2}\right)$ is proper. Now suppose that $c, d \in R$ and $c d \in\left(I: a^{2}\right)$ but $d^{2} \notin\left(I: a^{2}\right)$. Then $c d a^{2}=$ $(c a)(d a) \in I$. Since $d^{2} a^{2} \notin I$ and I is P-2-prime, we deduce that $(c a)^{2}=c^{2} a^{2}$ $\in I$. Therefore, $\left(I: a^{2}\right)$ is P-2-prime.
(7) Let I be irreducible and let $x y \in I$ be such that $x^{2} \notin I$, for some $x, y \in R$. If $x \in I$ or $y \in I$, then there is nothing to prove. Assume that $x \notin I$ and $y \notin I$. We show that $y^{2} \in I$. Suppose to the contrary, $y^{2} \notin I$. Let $a \in\left(I+x^{2}\right) \cap$ $\left(I+y^{2}\right)$. Then there are $c, d \in I$ and $s, t \in R$ such that $a=c+s x^{2}=d+t y^{2}$. Hence $a x=c x+s x^{3}=d x+t y^{2} x \in I$. Thus $s x^{3} \in I$, and since $(I: x)=\left(I: x^{2}\right)$, we conclude that $s x^{2} \in I$. Therefore, $a=c+s x^{2} \in I$. This shows that $\left(I+x^{2}\right)$ $\cap\left(I+y^{2}\right) \subseteq I$, and hence $\left(I+x^{2}\right) \cap\left(I+y^{2}\right)=I$, a contradiction. Thus I is a 2-prime ideal of R.

Corollary 2.5. (1) Let $f: K \rightarrow R$ be the inclusion homomorphism of rings. If J is a 2-prime ideal of R, then $J \cap K$ is a 2-prime ideal of K.
(2) Let $I \subseteq J$ be ideals of R. Then J is a 2-prime ideal of R if and only if J / I is a 2-prime ideal of R / I.

Corollary 2.6. Let I be an ideal of ring R and X is an indeterminate. Then the following statements hold.
(1) $\langle I, X\rangle$ is a 2-prime ideal of $R[X]$ if and only if I is a 2-prime ideal of R.
(2) If $I[X]$ is a 2-prime ideal of $R[X]$, then I is a 2-prime ideal of R.

Proof. (1) By part (2) of Corollary 2.5 and taking the isomorphism $\langle I, X\rangle /\langle X\rangle$ $\cong I$ in $\langle R, X\rangle /\langle X\rangle \cong R$, we conclude that $\langle I, X\rangle$ is a 2-prime ideal of $R[X]$ if and only if I is a 2 -prime ideal of R.
(2) It is clear by part (1) of Corollary 2.5.

It is worth mentioning that if J and K are 2-prime ideals of R, then $J \cap K$ and $J K$ need not be 2-prime ideals of R (See the following example).
Example 2.7. In the ring of integers $\mathbb{Z}, 2 \mathbb{Z}$ and $3 \mathbb{Z}$ are 2-prime ideals but $2 \mathbb{Z} \cap 3 \mathbb{Z}=6 \mathbb{Z}$ is not 2-prime.

Suppose that $R=\mathbb{Z}[y]+3 x \mathbb{Z}[x, y]$. Then $J=y R$ and $K=3 x \mathbb{Z}[x, y]$ are 2-prime ideals of R. Let $I=J K$. Then $(3 x) y \in I$. Clearly $9 x^{2} \notin I$ and $y^{2} \notin I$. Hence I is not a 2-prime ideal of R.

Next, we state the 2-prime avoidance theorem for 2-prime ideals of R. First we need the following lemma.

Let $I, I_{1}, I_{2}, \ldots, I_{n}$ be ideals of R. A covering $I \subseteq I_{1} \cup I_{2} \cup \cdots \cup I_{n}$ is said to be efficient precisely when I is not contained in the union of any $n-1$ of the ideals $I_{1}, I_{2}, \ldots, I_{n}$. Analogously we shall say that $I=I_{1} \cup I_{2} \cup \cdots \cup I_{n}$ is an efficient union if none of the I_{k} may be excluded (See [5, 7]).

Lemma 2.8. Let $I \subseteq I_{1} \cup I_{2} \cup \cdots \cup I_{n}(n \geq 2)$ be an efficient covering. If $I \cap \sqrt{I_{i}} \nsubseteq I \cap \sqrt{I_{j}}$ for every $i \neq j$, then no I_{j} is 2 -prime, for every $j \in\{1, \ldots, n\}$.
Proof. Suppose to the contrary, I_{j} is a 2-prime ideal of R, for some $j \in$ $\{1, \ldots, n\}$. It is easy to see that $I=\left(I \cap \sqrt{I_{1}}\right) \cup\left(I \cap \sqrt{I_{2}}\right) \cup \cdots \cup(I \cap$ $\left.\sqrt{I_{n}}\right)$ is an efficient covering. Thus there exists an element $x_{j} \in I \backslash \sqrt{I_{j}}$, for every $j \in\{1, \ldots, n\}$. Since $I=\left(I \cap I_{1}\right) \cup\left(I \cap I_{2}\right) \cup \cdots \cup\left(I \cap I_{n}\right)$ is an efficient union, we conclude that $\left(\bigcap_{i \neq j} I_{i}\right) \cap I \subseteq I_{j} \cap I$, by [5, Lemma 1]. By hypothesis, $\sqrt{I_{i}} \nsubseteq \sqrt{I_{j}}$, for every $i \neq j$. Hence there exists $y_{i} \in \sqrt{I_{i}} \backslash \sqrt{I_{j}}$ for every $i \neq j$. Let $y=\prod_{i \neq j} y_{i}$. Then $y=\prod_{i \neq j} y_{i} \in \sqrt{I_{i}}$ but $y=\prod_{i \neq j} y_{i}$ $\notin \sqrt{I_{j}}$. Therefore, there exist positive integers $a_{1}, a_{2}, \ldots, a_{n}$, where $y_{1}^{a_{1}} \in I_{1}$, $y_{2}^{a_{2}} \in I_{2}, \ldots, y_{n}^{a_{n}} \in I_{n}$. Suppose that $l=\max \left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$. Then $y^{l} \in I_{i}$ for every $i \neq j$ but $y^{l} \notin I_{j}$. Hence, $y^{l} x_{j} \in I \cap I_{i}$ for every $i \neq j$, but $y^{l} x_{j} \notin I \cap$ I_{j}, otherwise, assume that $y^{l} x_{j} \in I_{j} \cap I$. Since I_{j} is 2 -prime, we have either $y^{2 l} \in I_{j}$ or $x_{j}^{2} \in I_{j}$ which is impossible as neither $y \in \sqrt{I_{j}}$ nor $x_{j} \in \sqrt{I_{j}}$ (as by part 1 of Proposition 2.4, $\sqrt{I_{j}}$ is a prime ideal of R). Therefore, $y^{l} x_{j} \notin I$ $\cap I_{j}$ and this contradicts the fact that $\left(\bigcap_{i \neq j} I_{i}\right) \cap I \subseteq I_{j} \cap I$. The proof is complete.

Now, we present the 2-prime avoidance theorem.
Theorem 2.9 (2-prime avoidance theorem). Let I_{1}, \ldots, I_{n} be ideals of R and at most two of I_{1}, \ldots, I_{n} are not 2-prime. Suppose that I is an ideal of R such that $I \subseteq I_{1} \cup I_{2} \cup \ldots \cup I_{n}$ and $I \cap \sqrt{I_{i}} \nsubseteq I \cap \sqrt{I_{j}}$, for every $i \neq j$. Then $I \subseteq I_{j}$, for some $j \in\{1, \ldots, n\}$.
Proof. Let $I \subseteq I_{1} \cup I_{2} \cup \cdots \cup I_{n}$ be a covering such that at least $n-2$ of the ideals $I_{1}, I_{2}, \ldots, I_{n}$ are 2-prime. Without loss of generality, one may reduce the covering to an efficient covering. If $n=2$, then it is obvious. Suppose that $n>2$. Since the covering is efficient and $I \cap \sqrt{I_{i}} \nsubseteq I \cap \sqrt{I_{j}}$ for every $i \neq j$, by Lemma 2.8, $n<2$. Hence $n=1$ and so $I \subseteq I_{j}$, for some $j \in\{1, \ldots, n\}$.

In the light of Theorem 2.9, we state the following corollaries.
Corollary 2.10. Let $I=\left\langle r_{1}, r_{2}, \ldots, r_{s}\right\rangle$ be a finitely generated ideal of R, for some $r_{1}, r_{2}, \ldots, r_{s} \in R$. Let I_{1}, \ldots, I_{n} be 2-prime ideals of $R, I \nsubseteq \sqrt{I_{i}}$, for
every $i \in\{1, \cdots, n\}$ and $I \cap \sqrt{I_{i}} \nsubseteq I \cap \sqrt{I_{j}}$, for every $i \neq j$. Then there exist $b_{2}, \ldots, b_{s} \in R$ such that $\alpha=r_{1}+b_{2} r_{2}+\cdots+b_{s} r_{s} \notin \bigcup_{i=1}^{n} I_{i}$.

Proof. We prove the corollary by induction on n. If $n=1$, then the result is clear. So suppose that $n>1$ and the result has been proved for smaller values than n. Then there exist $a_{2}, \ldots, a_{s} \in R$ such that $x=r_{1}+a_{2} r_{2}+\cdots+a_{s} r_{s} \notin$ $\bigcup_{i=1}^{n-1} I_{i}$. If $x \notin I_{n}$, then $x \notin \bigcup_{i=1}^{n} I_{i}$ and so there is nothing to prove. Hence suppose that $x \in I_{n}$. If $r_{2}, \ldots, r_{s} \in \sqrt{I_{n}}$, then $r_{1} \in \sqrt{I_{n}}$, a contradiction, as $I \nsubseteq \sqrt{I_{n}}$. Thus we assume $r_{i} \notin \sqrt{I_{n}}$, for some i. Without loss of generality, suppose that $r_{2} \notin \sqrt{I_{n}}$. By the hypothesis, $\sqrt{I_{i}} \nsubseteq \sqrt{I_{n}}$, for every $i \neq n$. Hence, there exists $y_{i} \in \sqrt{I_{i}} \backslash \sqrt{I_{n}}$, for every $i \neq n$. Therefore, there exist positive integers $k_{1}, k_{2}, \ldots, k_{n-1}$, where $y_{1}^{k_{1}} \in I_{1}, y_{2}^{k_{2}} \in I_{2}, \ldots, y_{n-1}^{k_{n-1}} \in I_{n-1}$. Let $l=$ $\max \left\{k_{1}, k_{2}, \ldots, k_{n-1}\right\}$ and $y=\prod_{i=1}^{n-1} y_{i}$. Then $y^{l} \in I_{i}$, for every $i \neq n$ but $y^{l} \notin$ I_{n}. Therefore, $y \in \sqrt{I_{i}} \backslash \sqrt{I_{n}}$, for every $i \neq n$. Let $\alpha=r_{1}+\left(a_{2}+y^{l}\right) r_{2}+\cdots+a_{s} r_{s}$. We consider two cases. Case one: Suppose that $I \subseteq I_{1} \cup I_{2} \cup \cdots \cup I_{n}$. By the 2-prime avoidance theorem (Theorem 2.9), $I \subseteq I_{j}$, for some $j \in\{1, \ldots, n\}$, which is a contradiction. Case two: Suppose that $I \nsubseteq I_{1} \cup I_{2} \cup \cdots \cup I_{n}$. Then by a similar argument as above, we assume $r_{2} \notin \sqrt{I_{n}}$. Hence $\alpha=x+y^{l} r_{2} \notin$ $\bigcup_{i=1}^{n} I_{i}$ and so the proof is complete.

Corollary 2.11. Let $I_{1}, I_{2}, \ldots, I_{n}$ be 2-prime ideals of R, I be an ideal of R and $I \cap \sqrt{I_{i}} \nsubseteq I \cap \sqrt{I_{j}}$, for every $i \neq j$. If $r \in R$ and $R r+I \nsubseteq \bigcup_{i=1}^{n} I_{i}$, then there exists $x \in I$ such that $r+x \notin \bigcup_{i=1}^{n} I_{i}$.

Proof. Suppose that $r \in \bigcap_{i=1}^{k} I_{i}$ but $r \notin \bigcup_{i=k+1}^{n} I_{i}$. If $k=0$, then $r=r+0 \notin$ $\bigcup_{i=1}^{n} I_{i}$ and so we are done. Thus assume that $1 \leq k$. By the hypothesis, $I \cap$ $\sqrt{I_{i}} \nsubseteq I \cap \sqrt{I_{j}}$ for every $i \neq j$, and so prime avoidance theorem implies that $I \nsubseteq \bigcup_{i=1}^{k} \sqrt{I_{i}}$. Hence, there exists $a \in I \backslash \bigcup_{i=1}^{k} \sqrt{I_{i}}$. We show that $\bigcap_{i=k+1}^{n} I_{i}$ $\nsubseteq \bigcup_{i=1}^{k} \sqrt{I_{i}}$. Suppose that $\bigcap_{i=k+1}^{n} I_{i} \subseteq \bigcup_{i=1}^{k} \sqrt{I_{i}}$. By the 2-prime avoidance theorem we get $\bigcap_{i=k+1}^{n} I_{i} \subseteq \sqrt{I_{j}}$, for some $j \in\{1, \ldots, k\}$. This implies that $\sqrt{\bigcap_{i=k+1}^{n} I_{i}}=\bigcap_{i=k+1}^{n} \sqrt{I_{i}} \subseteq \sqrt{I_{j}}$ for some $j \in\{1, \ldots, k\}$. Since $\sqrt{I_{i}}$'s are prime, we conclude that $\sqrt{I_{i}} \subseteq \sqrt{I_{j}}$ where $i \in\{k+1, \ldots, n\}, j \in\{1, \ldots, k\}$. Thus, $I \cap \sqrt{I_{i}} \subseteq I \cap \sqrt{I_{j}}$ with $i \neq j$, which contradicts the hypothesis. Thus there exists $b \in \bigcap_{i=k+1}^{n} I_{i} \backslash \bigcup_{i=1}^{k} \sqrt{I_{i}}$. If for every $\alpha \in \bigcap_{i=k+1}^{n} I_{i} \backslash \bigcup_{i=1}^{k} I_{i}$ we have $\alpha \in \bigcup_{i=k+1}^{n} \sqrt{I_{i}} \backslash \bigcup_{i=1}^{k} I_{i}$, then we get $\left(\bigcap_{i=k+1}^{n} I_{i} \backslash \bigcup_{i=1}^{k} I_{i}\right) \subseteq\left(\bigcup_{i=k+1}^{n} \sqrt{I_{i}} \backslash\right.$ $\bigcup_{i=1}^{k} I_{i}$), and so $\bigcap_{i=k+1}^{n} I_{i} \subseteq \bigcup_{i=k+1}^{n} \sqrt{I_{i}}$ which is also a contradiction. Thus, we can assume that $b \in \bigcap_{i=k+1}^{n} I_{i} \backslash \bigcup_{i=1}^{k} \sqrt{I_{i}}$. Let $x=a b$. Then $x \in I$. We also have $x \in \bigcap_{i=k+1}^{n} I_{i}$, but $x \notin \bigcup_{i=1}^{k} I_{i}$, because otherwise $x=a b \in I_{i}$ for some $i \in\{1, \ldots, k\}$. Since I_{i} is 2-prime, either $a^{2} \in I_{i}$ or $b^{2} \in I_{i}$ for some $i \in$ $\{1, \ldots, k\}$, a contradiction. Thus $x \in \bigcap_{i=k+1}^{n} I_{i} \backslash \bigcup_{i=1}^{k} I_{i}$. Now $r \in \bigcap_{i=1}^{k} I_{i} \backslash$ $\bigcup_{i=k+1}^{n} I_{i}$ shows that $r+x \notin \bigcup_{i=1}^{n} I_{i}$.

3. 2-P rings

In this section we study rings in which every 2 -prime ideal is prime.
Definition 3.1. Let R be a ring. We say that R is a $2-P$ ring if every 2-prime ideal of R is prime.

The prove Theorems 3.4 and 3.7, the following lemma is needed.
Lemma 3.2. Let (R, M) be a quasi-local ring and P be a prime ideal of R. Then PM is a 2-prime ideal of R. Furthermore, $P M$ is prime if and only if $P M=P$.
Proof. Let $a, b \in R$ and $a b \in P M \subseteq P$. Clearly, $a \in P$ or $b \in P$. We assume that $a \in P$. Since a is not a unit, we conclude that $a \in M$. Hence, $a^{2} \in P M$, as desired.

Now let $P M$ be a prime ideal of R and $x \in P$. Clearly, $P M \subseteq P \subseteq M$. Hence, $x^{2} \in P M$. Since $P M$ is prime, $x \in P M$, i.e., $P M=P$.
Corollary 3.3. Let (R, M) be a local 2- P ring. Then R is a field.
Proof. By Lemma 3.2, M^{2} is 2-prime. Since R is a $2-P$ ring, we deduce that $M^{2}=M$. Now, the result follows from Nakayama's lemma (see [8, Theorem 8.24]).

Theorem 3.4. Let (R, M) be a quasi-local ring. Then R is a $2-P$ ring if and only if $I M=P$, for every minimal prime ideal P over an arbitrary 2-prime ideal I. In particular, M is an idempotent ideal if R is a $2-P$ ring.

Proof. $\Rightarrow)$ Let R be a $2-P$ ring and P be a minimal prime over a 2-prime ideal I. Then I is prime and $P=I$. By Lemma $3.2, I M$ is 2 -prime and hence $I M$ is prime. Again by Lemma 3.2, $I M=I$, the proof is complete.
$\Leftarrow)$ Let I be a 2-prime ideal of R. By Proposition 2.4(1), $I \subseteq \sqrt{I}=P$. Since $I M=P$, we deduce that $P=I M \subseteq I \cap M=I$ and so $I=P$ is prime, as desired.
Proposition 3.5. Suppose that R is a 2-P ring. Then $P^{2}=P$, for every prime ideal P of R.

Proof. Suppose that R is a 2-P ring and P is a prime ideal of R. By part (2) of Proposition 2.4, P^{2} is a 2-prime ideal of R. Since R is $2-P$ ring, P^{2} is a prime ideal of R. It is easily seen that $P^{2}=P$.
Definition 3.6. Let I be an ideal and P be a 2-prime ideal of a ring R. We say that P is a minimal 2-prime ideal over I if there is no a 2-prime ideal Q of R such that $I \subseteq Q \subset P$. We denote the set of minimal 2-prime ideals over I by $2-M i n_{R}(I)$.
Theorem 3.7. Let (R, M) be a quasi-local ring, P a prime ideal of R and $(\sqrt{I})^{2} \subseteq I$, for every 2-prime ideal I of R. Then the following statements are equivalent:
(1) For every ideal $I \in 2-\operatorname{Min}_{R}\left(P^{2}\right)$, if $P \in \operatorname{Min}_{R}(I)$, then $I M=P$;
(2) For every ideal $I \in 2-$ Min $_{R}\left(P^{2}\right)$ such that $I \subseteq P$, we have $I=P$.

Proof. $\Rightarrow)$ Let $I \in 2-\operatorname{Min}_{R}\left(P^{2}\right)$ and $I \subseteq P$. We claim that $P \in \operatorname{Min}_{R}(I)$. Suppose there exists a prime ideal Q such that $I \subseteq Q \subseteq P$. Clearly,

$$
P^{2} \subseteq I \subseteq Q \subseteq P
$$

Let $x \in P$. Then $x^{2} \in P^{2}$ and hence, $x^{2} \in Q$. Since Q is prime, we get $x \in Q$. Therefore, $P=Q$ and so the claim is proved. Clearly, $I M \subseteq I \subseteq P$. Now by Part (1) $I M=P$ and so $I=P$.
$\Leftarrow)$ Suppose that $I \in 2-\operatorname{Min}_{R}\left(P^{2}\right)$ such that P is a minimal prime ideal over I. Since \sqrt{I} is a prime ideal of R and since $P \in \operatorname{Min}_{R}(I)$, we conclude that $\sqrt{I}=P$. Hence by hypothesis, $(\sqrt{I})^{2}=P^{2} \subseteq I \subseteq P$ and so (by (2)) $I=P$. Since $P^{2} \subseteq P M \subseteq I=P$ and $P M$ is 2-prime (by Lemma 3.2), we conclude that $P M=I M=P$.

We close this paper with the following corollary.
Corollary 3.8. Let (R, M) be a quasi-local ring and $I \in 2-\operatorname{Min}_{R}\left(P^{2}\right)$, for every P-2-prime ideal I. Then R is a $2-P$ ring if and only if $I=P$, for every ideal $I \in 2-$ Min $_{R}\left(P^{2}\right)$ such that $I \subseteq P$.

Proof. The proof follows from Theorems 3.4 and 3.7.
Acknowledgements. The authors express their deep gratitude to the referee for his/her meticulous reading and valuable suggestions which have definitely improved the paper.

References

[1] D. D. Anderson and E. Smith, Weakly prime ideals, Houston J. Math. 29 (2003), no. 4, 831-840.
[2] A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc. 75 (2007), no. 3, 417-429. https://doi.org/10.1017/S0004972700039344
[3] C. Beddani and W. Messirdi, 2-prime ideals and their applications, J. Algebra Appl. 15 (2016), no. 3, 1650051, 11 pp. https://doi.org/10.1142/S0219498816500511
[4] S. M. Bhatwadekar and P. K. Sharma, Unique factorization and birth of almost primes, Comm. Algebra 33 (2005), no. 1, 43-49. https://doi.org/10.1081/AGB-200034161
[5] C. Gottlieb, On finite unions of ideals and cosets, Comm. Algebra 22 (1994), no. 8, 3087-3097. https://doi.org/10.1080/00927879408825014
[6] J. R. Hedstrom and E. G. Houston, Pseudo-valuation domains, Pacific J. Math. 75 (1978), no. 1, 137-147. http://projecteuclid.org/euclid.pjm/1102810151
[7] S. McAdam, Finite coverings by ideals, in Ring theory (Proc. Conf., Univ. Oklahoma, Norman, Okla., 1973), 163-171. Lecture Notes in Pure and Appl. Math., 7, Dekker, New York, 1974.
[8] R. Y. Sharp, Steps in Commutative Algebra, second edition, London Mathematical Society Student Texts, 51, Cambridge University Press, Cambridge, 2000.

Reza Nikandish
Department of Mathematics
Jundi-Shapur University of Technology
Dezful 64615-334, Iran
Email address: r.nikandish@ipm.ir
Mohammad Javad Nikmehr
Faculty of Mathematics
K.N. Toosi University of Technology

Tehran 16315-1618, Iran
Email address: nikmehr@kntu.ac.ir
Ali Yassine
Faculty of Mathematics
K.n. Toosi University of Technology

Tehran 16315-1618, Iran
Email address: yassine_ali@email.kntu.ac.ir

[^0]: Received January 26, 2019; Revised May 26, 2019; Accepted June 26, 2019.
 2010 Mathematics Subject Classification. Primary 13A15, 13C05.
 Key words and phrases. 2-prime ideal, 2-prime avoidance theorem, 2-P ring

