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MORE ON THE 2-PRIME IDEALS

OF COMMUTATIVE RINGS

Reza Nikandish, Mohammad Javad Nikmehr, and Ali Yassine

Abstract. Let R be a commutative ring with identity. A proper ideal I

of R is called 2-prime if for all a, b ∈ R such that ab ∈ I, then either a2 or
b2 lies in I. In this paper, we study 2-prime ideals which are generalization

of prime ideals. Our study provides an analogous to the prime avoidance
theorem and some applications of this theorem. Also, it is shown that if

R is a PID, then the families of primary ideals and 2-prime ideals of R

are identical. Moreover, a number of examples concerning 2-prime ideals
are given. Finally, rings in which every 2-prime ideal is a prime ideal are

investigated.

1. Introduction

We assume throughout this paper that all rings are commutative with iden-
tity. Let R be a ring and I be an ideal of R. The set of nilpotent elements of
R, the set of zero-divisors of R, the set of minimal prime ideal of I, extension
and contraction of I under ring homomorphism are denoted by Nil(R), Z(R),
MinR(I), Ie and Jc, respectively. By a proper ideal I of R we mean an ideal
with I 6= R. For any undefined notation or terminology in commutative ring
theory, we refer the reader to [8].

Prime ideals play a central role in commutative ring theory and so this
notion has been generalized and studied in several directions. The importance
of some of these generalizations is same as the prime ideals, say primary ideals.
In a sense they determine how far an ideal is from being prime. For instance,
in 1978, Hedstrom and Houston [6] defined the strongly prime ideal, that is
a proper ideal P of R such that for a, b ∈ K with ab ∈ P , either a ∈ P or
b ∈ P where K is the quotient field of R. In 2003, Anderson and Smith [1]
introduced the notion of a weakly prime ideal, i.e., a proper ideal P of R with
the property that for a, b ∈ R, 0 6= ab ∈ P implies a ∈ P or b ∈ P . So a prime
ideal is weakly prime. In 2005, Bhatwadekar and Sharma [4] introduced the
notion of almost prime ideal which is also a generalization of prime ideal. A
proper ideal I of an integral domain R is said to be almost prime if for a, b ∈ R
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with ab ∈ I \ I2, then either a ∈ I or b ∈ I, and it is clear that every weakly
prime ideal is an almost prime ideal. The notion of 2-absorbing ideals were
introduced and investigated in 2007 by Badawi [2]. A nonzero proper ideal I of
R is called a 2-absorbing ideal if whenever a, b, c ∈ R and abc ∈ I, then ab ∈ I
or ac ∈ I or bc ∈ I. This paper is in this theme and it is devoted to study a
generalization of prime ideals so called 2-prime ideals.

A proper ideal I of R is said to be 2-prime if whenever a, b ∈ R and ab ∈ I,
then either a2 or b2 lies in I. The concept of 2-prime ideals was first introduced
and studied by Beddani and Messirdi in [3] and they uses it to present certain
characterization of valuation rings. Clearly, every prime ideal is a 2-prime ideal.
However, the converse is not true. For example, 9Z is a 2-prime ideal of R, but
it is not prime. For nontrivial 2-prime ideals see Example 2.7.

In Section 2, we classify 2-prime ideals of a PID and we show that the
families of primary ideals and 2-prime ideals in a PID are identical (Theorem
2.3). In Proposition 2.4, we give some basic properties of 2-prime ideals. It is
easily proved that if J and K are 2-prime ideals of R, then J ∩ K and JK
need not be a 2-prime ideal of R. By using the technique of efficient covering
of ideals, In Theorem 2.9, we prove the 2-prime avoidance theorem for ideals.
In Section 3, we investigate all rings in which every 2-prime ideal is prime, i.e.,
2-P rings. In Theorem 3.4 we show that if (R,M) is a quasi-local ring, then R
is a 2-P ring if and only if IM = P , for every minimal prime ideal P over an
arbitrary 2-prime ideal I. Finally, it is proved that if (R,M) is a quasi-local
ring and I ∈ 2-MinR(P 2), for every P -2-prime ideal I, then R is a 2-P ring if
and only if I = P , for every ideal I ∈ 2-MinR(P 2) such that I ⊆ P (Corollary
3.8).

2. The 2-prime avoidance theorem

In this section, we study some basic properties of 2-prime ideals and we
prove the 2-prime avoidance theorem.

Definition 2.1. Let R be a ring. A proper ideal I of R is called 2-prime if for
all a, b ∈ R such that ab ∈ I, then either a2 or b2 lies in I.

Recall that a proper ideal I of R is called a semiprimary if whenever a, b ∈ R
and ab ∈ I, we have a ∈

√
I or b ∈

√
I. Clearly, every 2-prime ideal is a

semiprimary ideal of R. It is worth mentioning that if I is a semiprimary ideal
of R, then I need not be a 2-prime ideal of R (see the following example).

Example 2.2. Suppose that R = K[x, y, z] is the ring of polynomials over K in
indeterminates x, y, z, where K is a field. It follows from [8, Exercice 4.28] that√

(x3, xy, y3) is a prime ideal of R, and so (x3, xy, y3) is a semiprimary ideal of
R. But (x3, xy, y3) is not 2-prime since xy ∈ (x3, xy, y3) and x2 /∈ (x3, xy, y3)
and y2 /∈ (x3, xy, y3).

In the following theorem, one may see that in a PID every semiprimary ideal
of R is 2-prime.
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Theorem 2.3. Let R be a principal ideal domain and I be an ideal of R. Then
the following statements are equivalent.

(1) I is a semiprimary ideal of R.
(2) I is a 2-prime ideal of R.
(3) I is a primary ideal of R.

Proof. (1) ⇔ (3) Let I be a semiprime ideal of R. Since R is a PID and
every prime ideal is maximal, it is known that every semiprimary ideal of R is
primary.

(2)⇔ (3) We show that I is a 2-prime ideal of R if and only if either I = (pn),
for some positive integer n and an irreducible element p of R or p = 0, and so
the result follows from [8, Example 4.10]. Suppose that I is a non-zero 2-prime
ideal of R. Since R is a principal ideal domain, there exists r ∈ R such that
I = (r). If r is irreducible, then n = 1 and we are done. Suppose that r is not
an irreducible element. Since R is a unique factorization, r can be expressed
in the form

r = pn1
1 pn2

2 · · · pnm
m ,

where m,n1, n2, . . . , nm are positive integers and pi’s are irreducible elements
of R such that pi and pj are not associates, if i 6= j. Let a = pn1

1 and b =
pn2
2 · · · pnm

m . Then ab ∈ I. Since I is 2-prime, either a2 ∈ I or b2 ∈ I.

If a2 = p2n1
1 ∈ I = (r), then there exists x ∈ R such that

a2 = p2n1
1 = xr = xpn1

1 pn2
2 · · · pnm

m , and so pn1
1 = xpn2

2 · · · pnm
m

which implies that pj |p1 for some 2 ≤ j ≤ m. Since p1 is an irreducible element
of R, we conclude that p1 and pj are associates, a contradiction.

If b2 = (pn2
2 · · · pnm

m )2 ∈ I = (r), then there exists s ∈ R such that

(pn2
2 · · · pnm

m )2 = sr = spn1
1 pn2

2 · · · pnm
m ,

which implies that p1|(pn2
2 · · ·pnm

m )2. Since R is a principal ideal domain, p1|pj ,
for some 2 ≤ j ≤ m, a contradiction.

Conversely, suppose that I = (pn), for some irreducible element p ∈ R and
a positive integer n. Assume a, b ∈ R and ab ∈ I. Then a = cpk and b = vpi

for some c, v ∈ R such that i+ k ≥ n. Assume that 2k < n and 2i < n. Then
2k + 2i < 2n, a contradiction since i+ k ≥ n. Thus a2 ∈ I or b2 ∈ I, and so I
is 2-prime. �

In the following proposition, we present some basic properties of 2-prime
ideals.

Proposition 2.4. Suppose that I is an ideal of R. Then the following state-
ments hold:

(1) If I is a 2-prime ideal of R, then P :=
√
I is a prime ideal of R, and

we say that I is P -2-prime. Furthermore, P is the smallest prime ideal of R
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which contains I, in that every prime ideal of R which contains I must also
contain P .

(2) Let P be a prime ideal of R. Then P 2 is a 2-prime ideal of R.
(3) Let f : K → R be a homomorphism of rings. If f is epimorphism and J

is a 2-prime ideal of K containing ker(f), then f(J) is a 2-prime ideal of R.
(4) Let S be a multiplicatively closed subset of R and f : R→ S−1R denote

the natural ring homomorphism. Then the following statements hod:
(i) If I is a P -2-prime ideal of R such that I ∩ S = ∅, f is an epimorphism

and I containing ker(f), then Ie := f(I)−1R is a P e-2-prime ideal of S−1R.
Furthermore, if S−1I is 2-prime and S ∩ ZR(R/I) = ∅, then I is 2-prime.

(ii) If J is a P -2-prime ideal of S−1R, then Jc = f−1(J) is a P c-2-prime
ideal of R such that Jc ∩ S = ∅.

(5) Let R1 and R2 be rings, and let R be the direct product ring R = R1×R2.
Then I1 (resp. I2) is a 2-prime ideal of R1 (resp. R2) if and only if I1 × R2

(resp. R1 × I2) is a 2-prime ideal of R.
(6) If I is P -2-prime, and a ∈ R \ P , then (I : a2) is P -2-prime. In

particular, P =
√

(I : a2).
(7) If I is irreducible and (I : x) = (I : x2) for every x ∈ R \ I, then I is

2-prime.

Proof. (1) It is clear since every 2-prime ideal is a semipimary ideal of R.
(2) It is clear, as P 2 ⊆ P .
(3) Let x, y ∈ R and xy ∈ f(J). Since f is surjective, there are a, b ∈ K

such that x = f(a) and y = f(b). Thus xy = f(ab) ∈ f(J). This means that
there is q ∈ J such that f(ab) = f(q). In other words ab − q ∈ kerf . Since
kerf ⊆ J , we see that both of ab − q and q are contained in J , and therefore
ab = (ab − q) + q ∈ J . But J is a 2-prime ideal, so either a2 ∈ I or b2 ∈ I
and consequently either f(a2) = x2 ∈ f(I) or f(b2) = y2 ∈ f(J). The proof is
complete.

(4) (i) Since I ∩ S = ∅, we conclude that Ie 6= S−1R. Thus Ie is a proper

ideal of S−1R. By [8, Lemma 5.24] and [8, Lemma 5.31], Ie E S−1R and
√
Ie

= (
√
I)e = P e. Let x, y ∈ S−1R and xy ∈ Ie. Then x = a

s1
and y = b

s2
, for

some a, b ∈ R, s1, s2 ∈ S, and ab
s1s2
∈ Ie. Hence there exist c ∈ f(I) and r ∈ S

such that ab
s1s2

= c
r . Thus t(abr − cs1s2) = 0, for some t ∈ S. We observe

that (ta)(rb) ∈ f(I). Since I is a 2-prime ideal of R, it is clear by part (3),
f(I) is also a 2-prime ideal of S−1R, and we obtain (ta)2 ∈ f(I) or (rb)2 ∈
f(I). If (ta)2 ∈ f(I), then x2 = ( a

s1
)2 = t2a2

(ts1)2
∈ Ie, and if (rb)2 ∈ f(I), then

y2 = ( b
s2

)2 = r2b2

(rs1)2
∈ Ie. Thus Ie is a P e-2-prime ideal of S−1R. Now, assume

that a, b ∈ R and ab ∈ I. Then ab/1 ∈ S−1I. Since S−1I is 2-prime, either
a2/1 ∈ S−1I or b2/1 ∈ S−1I. If a2/1 ∈ S−1I, then there exists s ∈ S such that
sa2 ∈ I. Since S ∩ ZR(R/I) = ∅, we conclude that a2 ∈ I. The case b2/1 ∈
S−1I is similar. Thus S−1I is 2-prime.
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(ii) It is an immediate consequent from part (3) of [3, Proposition 1.3] and
[8, Exercise 2.43] that Jc is P c-2-prime.

(5) ⇒) Suppose that I1 is a 2-prime ideal of R1. Let (a, b)(c, d) ∈ I1 × R2

for some (a, b), (c, d) ∈ R. Then ac ∈ I1. Since I1 is 2-prime, either a2 ∈ I1 or
c2 ∈ I1. Hence either (a, b)2 ∈ I1 ×R2 or (c, d)2 ∈ I1 ×R2. Thus I1 × R2 is a
2-prime ideal of R.
⇐) Let I1 × R2 be a 2-prime ideal of R, and let ab ∈ I1 for some a, b ∈

R1. Then (a, 1)(b, 1) ∈ I1 ×R2. Hence (a, 1)2 ∈ I1 × R2 or (b, 1)2 ∈ I1 × R2.
Therefore a2 ∈ I1 or b2 ∈ I1. Thus I1 is a 2-prime ideal of R1.

(6) Let b ∈ (I : a2). Then ba2 ∈ I and a /∈ P . Since I is a P -2-prime ideal,

we get b2 ∈ I and hence b ∈
√
I = P . Thus I ⊆ (I : a2) ⊆ P and so

P =
√
I ⊆

√
(I : a2) ⊆

√
P = P.

Hence
√

(I : a2) ⊆
√
P = P ⊂ R. This also means that (I : a2) is proper.

Now suppose that c, d ∈ R and cd ∈ (I : a2) but d2 /∈ (I : a2). Then cda2 =
(ca)(da) ∈ I. Since d2a2 /∈ I and I is P -2-prime, we deduce that (ca)2 = c2a2

∈ I. Therefore, (I : a2) is P -2-prime.
(7) Let I be irreducible and let xy ∈ I be such that x2 /∈ I, for some x, y ∈ R.

If x ∈ I or y ∈ I, then there is nothing to prove. Assume that x /∈ I and y /∈ I.
We show that y2 ∈ I. Suppose to the contrary, y2 /∈ I. Let a ∈ (I + x2) ∩
(I + y2). Then there are c, d ∈ I and s, t ∈ R such that a = c+ sx2 = d+ ty2.
Hence ax = cx+sx3 = dx+ty2x ∈ I. Thus sx3 ∈ I, and since (I : x) = (I : x2),
we conclude that sx2 ∈ I. Therefore, a = c+sx2 ∈ I. This shows that (I+x2)
∩ (I + y2) ⊆ I, and hence (I + x2) ∩(I + y2) = I, a contradiction. Thus I is a
2-prime ideal of R. �

Corollary 2.5. (1) Let f : K → R be the inclusion homomorphism of rings.
If J is a 2-prime ideal of R, then J ∩K is a 2-prime ideal of K.

(2) Let I ⊆ J be ideals of R. Then J is a 2-prime ideal of R if and only if
J/I is a 2-prime ideal of R/I.

Corollary 2.6. Let I be an ideal of ring R and X is an indeterminate. Then
the following statements hold.

(1) 〈I,X〉 is a 2-prime ideal of R[X] if and only if I is a 2-prime ideal of R.
(2) If I[X] is a 2-prime ideal of R[X], then I is a 2-prime ideal of R.

Proof. (1) By part (2) of Corollary 2.5 and taking the isomorphism 〈I,X〉/〈X〉
∼= I in 〈R,X〉/〈X〉 ∼= R, we conclude that 〈I,X〉 is a 2-prime ideal of R[X] if
and only if I is a 2-prime ideal of R.

(2) It is clear by part (1) of Corollary 2.5. �

It is worth mentioning that if J and K are 2-prime ideals of R, then J ∩ K
and JK need not be 2-prime ideals of R (See the following example).

Example 2.7. In the ring of integers Z, 2Z and 3Z are 2-prime ideals but
2Z ∩ 3Z = 6Z is not 2-prime.
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Suppose that R = Z[y] + 3xZ[x, y]. Then J = yR and K = 3xZ[x, y] are
2-prime ideals of R. Let I = JK. Then (3x)y ∈ I. Clearly 9x2 /∈ I and y2 /∈ I.
Hence I is not a 2-prime ideal of R.

Next, we state the 2-prime avoidance theorem for 2-prime ideals of R. First
we need the following lemma.

Let I, I1, I2, . . . , In be ideals of R. A covering I ⊆ I1 ∪ I2 ∪ · · · ∪ In is said
to be efficient precisely when I is not contained in the union of any n − 1 of
the ideals I1, I2, . . . , In. Analogously we shall say that I = I1 ∪ I2 ∪ · · · ∪ In
is an efficient union if none of the Ik may be excluded (See [5, 7]).

Lemma 2.8. Let I ⊆ I1 ∪ I2 ∪ · · · ∪ In (n ≥ 2) be an efficient covering. If
I∩
√
Ii * I∩

√
Ij for every i 6= j, then no Ij is 2-prime, for every j ∈ {1, . . . , n}.

Proof. Suppose to the contrary, Ij is a 2-prime ideal of R, for some j ∈
{1, . . . , n}. It is easy to see that I = (I ∩

√
I1) ∪ (I ∩

√
I2) ∪ · · · ∪ (I ∩√

In) is an efficient covering. Thus there exists an element xj ∈ I \
√
Ij , for

every j ∈ {1, . . . , n}. Since I = (I ∩ I1) ∪ (I ∩ I2) ∪ · · · ∪ (I ∩ In) is an
efficient union, we conclude that (

⋂
i 6=j Ii) ∩ I ⊆ Ij ∩ I, by [5, Lemma 1]. By

hypothesis,
√
Ii *

√
Ij , for every i 6= j. Hence there exists yi ∈

√
Ii \

√
Ij

for every i 6= j. Let y =
∏

i 6=j yi. Then y =
∏

i 6=j yi ∈
√
Ii but y =

∏
i 6=j yi

/∈
√
Ij . Therefore, there exist positive integers a1, a2, . . . , an, where ya1

1 ∈ I1,

ya2
2 ∈ I2, . . . , yan

n ∈ In. Suppose that l = max{a1, a2, . . . , an}. Then yl ∈ Ii for
every i 6= j but yl /∈ Ij . Hence, ylxj ∈ I ∩ Ii for every i 6= j, but ylxj /∈ I ∩
Ij , otherwise, assume that ylxj ∈ Ij ∩ I. Since Ij is 2-prime, we have either

y2l ∈ Ij or x2j ∈ Ij which is impossible as neither y ∈
√
Ij nor xj ∈

√
Ij (as

by part 1 of Proposition 2.4,
√
Ij is a prime ideal of R). Therefore, ylxj /∈ I

∩ Ij and this contradicts the fact that (
⋂

i 6=j Ii) ∩ I ⊆ Ij ∩ I. The proof is
complete. �

Now, we present the 2-prime avoidance theorem.

Theorem 2.9 (2-prime avoidance theorem). Let I1, . . . , In be ideals of R and
at most two of I1, . . . , In are not 2-prime. Suppose that I is an ideal of R such
that I ⊆ I1 ∪ I2 ∪ . . .∪ In and I ∩

√
Ii * I ∩

√
Ij, for every i 6= j. Then I ⊆ Ij,

for some j ∈ {1, . . . , n}.

Proof. Let I ⊆ I1 ∪ I2 ∪ · · · ∪ In be a covering such that at least n − 2 of
the ideals I1, I2, . . . , In are 2-prime. Without loss of generality, one may reduce
the covering to an efficient covering. If n = 2, then it is obvious. Suppose that
n > 2. Since the covering is efficient and I ∩

√
Ii * I ∩

√
Ij for every i 6= j,

by Lemma 2.8, n < 2. Hence n = 1 and so I ⊆ Ij , for some j ∈ {1, . . . , n}. �

In the light of Theorem 2.9, we state the following corollaries.

Corollary 2.10. Let I = 〈r1, r2, . . . , rs〉 be a finitely generated ideal of R, for
some r1, r2, . . . , rs ∈ R. Let I1, . . . , In be 2-prime ideals of R, I *

√
Ii, for
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every i ∈ {1, · · · , n} and I ∩
√
Ii * I ∩

√
Ij, for every i 6= j. Then there exist

b2, . . . , bs ∈ R such that α = r1 + b2r2 + · · ·+ bsrs /∈
⋃n

i=1 Ii.

Proof. We prove the corollary by induction on n. If n = 1, then the result is
clear. So suppose that n > 1 and the result has been proved for smaller values
than n. Then there exist a2, . . . , as ∈ R such that x = r1 + a2r2 + · · ·+ asrs /∈⋃n−1

i=1 Ii. If x /∈ In, then x /∈
⋃n

i=1 Ii and so there is nothing to prove. Hence

suppose that x ∈ In. If r2, . . . , rs ∈
√
In, then r1 ∈

√
In, a contradiction, as

I *
√
In. Thus we assume ri /∈

√
In, for some i. Without loss of generality,

suppose that r2 /∈
√
In. By the hypothesis,

√
Ii *

√
In, for every i 6= n. Hence,

there exists yi ∈
√
Ii \

√
In, for every i 6= n. Therefore, there exist positive

integers k1, k2, . . . , kn−1, where yk1
1 ∈ I1, yk2

2 ∈ I2, . . . , y
kn−1

n−1 ∈ In−1. Let l =

max{k1, k2, . . . , kn−1} and y =
∏n−1

i=1 yi. Then yl ∈ Ii, for every i 6= n but yl /∈
In. Therefore, y ∈

√
Ii \
√
In, for every i 6= n. Let α = r1+(a2+yl)r2+···+asrs.

We consider two cases. Case one: Suppose that I ⊆ I1 ∪ I2 ∪ · · · ∪ In. By
the 2-prime avoidance theorem (Theorem 2.9), I ⊆ Ij , for some j ∈ {1, . . . , n},
which is a contradiction. Case two: Suppose that I * I1 ∪ I2 ∪ ··· ∪ In. Then

by a similar argument as above, we assume r2 /∈
√
In. Hence α = x + ylr2 /∈⋃n

i=1 Ii and so the proof is complete. �

Corollary 2.11. Let I1, I2, . . . , In be 2-prime ideals of R, I be an ideal of R
and I ∩

√
Ii * I ∩

√
Ij, for every i 6= j. If r ∈ R and Rr + I *

⋃n
i=1 Ii, then

there exists x ∈ I such that r + x /∈
⋃n

i=1 Ii.

Proof. Suppose that r ∈
⋂k

i=1 Ii but r /∈
⋃n

i=k+1 Ii. If k = 0, then r = r+ 0 /∈⋃n
i=1 Ii and so we are done. Thus assume that 1 ≤ k. By the hypothesis, I ∩√
Ii * I ∩

√
Ij for every i 6= j, and so prime avoidance theorem implies that

I *
⋃k

i=1

√
Ii. Hence, there exists a ∈ I \

⋃k
i=1

√
Ii. We show that

⋂n
i=k+1 Ii

*
⋃k

i=1

√
Ii. Suppose that

⋂n
i=k+1 Ii ⊆

⋃k
i=1

√
Ii. By the 2-prime avoidance

theorem we get
⋂n

i=k+1 Ii ⊆
√
Ij , for some j ∈ {1, . . . , k}. This implies that√⋂n

i=k+1 Ii =
⋂n

i=k+1

√
Ii ⊆

√
Ij for some j ∈ {1, . . . , k}. Since

√
Ii’s are

prime, we conclude that
√
Ii ⊆

√
Ij where i ∈ {k + 1, . . . , n}, j ∈ {1, . . . , k}.

Thus, I ∩
√
Ii ⊆ I ∩

√
Ij with i 6= j, which contradicts the hypothesis. Thus

there exists b ∈
⋂n

i=k+1 Ii \
⋃k

i=1

√
Ii. If for every α ∈

⋂n
i=k+1 Ii \

⋃k
i=1 Ii we

have α ∈
⋃n

i=k+1

√
Ii\

⋃k
i=1 Ii, then we get (

⋂n
i=k+1 Ii\

⋃k
i=1 Ii) ⊆ (

⋃n
i=k+1

√
Ii\⋃k

i=1 Ii), and so
⋂n

i=k+1 Ii ⊆
⋃n

i=k+1

√
Ii which is also a contradiction. Thus,

we can assume that b ∈
⋂n

i=k+1 Ii \
⋃k

i=1

√
Ii. Let x = ab. Then x ∈ I. We

also have x ∈
⋂n

i=k+1 Ii, but x /∈
⋃k

i=1 Ii, because otherwise x = ab ∈ Ii for

some i ∈ {1, . . . , k}. Since Ii is 2-prime, either a2 ∈ Ii or b2 ∈ Ii for some i ∈
{1, . . . , k}, a contradiction. Thus x ∈

⋂n
i=k+1 Ii \

⋃k
i=1 Ii. Now r ∈

⋂k
i=1 Ii \⋃n

i=k+1 Ii shows that r + x /∈
⋃n

i=1 Ii. �
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3. 2-P rings

In this section we study rings in which every 2-prime ideal is prime.

Definition 3.1. Let R be a ring. We say that R is a 2-P ring if every 2-prime
ideal of R is prime.

The prove Theorems 3.4 and 3.7, the following lemma is needed.

Lemma 3.2. Let (R,M) be a quasi-local ring and P be a prime ideal of R.
Then PM is a 2-prime ideal of R. Furthermore, PM is prime if and only if
PM = P .

Proof. Let a, b ∈ R and ab ∈ PM ⊆ P . Clearly, a ∈ P or b ∈ P . We assume
that a ∈ P . Since a is not a unit, we conclude that a ∈ M . Hence, a2 ∈ PM ,
as desired.

Now let PM be a prime ideal of R and x ∈ P . Clearly, PM ⊆ P ⊆ M .
Hence, x2 ∈ PM . Since PM is prime, x ∈ PM , i.e., PM = P . �

Corollary 3.3. Let (R,M) be a local 2-P ring. Then R is a field.

Proof. By Lemma 3.2, M2 is 2-prime. Since R is a 2-P ring, we deduce that
M2 = M . Now, the result follows from Nakayama’s lemma (see [8, Theorem
8.24]). �

Theorem 3.4. Let (R,M) be a quasi-local ring. Then R is a 2-P ring if and
only if IM = P , for every minimal prime ideal P over an arbitrary 2-prime
ideal I. In particular, M is an idempotent ideal if R is a 2-P ring.

Proof. ⇒) Let R be a 2-P ring and P be a minimal prime over a 2-prime ideal
I. Then I is prime and P = I. By Lemma 3.2, IM is 2-prime and hence IM
is prime. Again by Lemma 3.2, IM = I, the proof is complete.
⇐) Let I be a 2-prime ideal of R. By Proposition 2.4(1), I ⊆

√
I = P . Since

IM = P , we deduce that P = IM ⊆ I ∩ M = I and so I = P is prime, as
desired. �

Proposition 3.5. Suppose that R is a 2-P ring. Then P 2 = P , for every
prime ideal P of R.

Proof. Suppose that R is a 2-P ring and P is a prime ideal of R. By part (2) of
Proposition 2.4, P 2 is a 2-prime ideal of R. Since R is 2-P ring, P 2 is a prime
ideal of R. It is easily seen that P 2 = P . �

Definition 3.6. Let I be an ideal and P be a 2-prime ideal of a ring R. We
say that P is a minimal 2-prime ideal over I if there is no a 2-prime ideal Q of
R such that I ⊆ Q ⊂ P . We denote the set of minimal 2-prime ideals over I
by 2-MinR(I).

Theorem 3.7. Let (R,M) be a quasi-local ring, P a prime ideal of R and

(
√
I)2 ⊆ I, for every 2-prime ideal I of R. Then the following statements are

equivalent:
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(1) For every ideal I ∈ 2-MinR(P 2), if P ∈MinR(I), then IM = P ;
(2) For every ideal I ∈ 2-MinR(P 2) such that I ⊆ P , we have I = P .

Proof. ⇒) Let I ∈ 2-MinR(P 2) and I ⊆ P . We claim that P ∈ MinR(I).
Suppose there exists a prime ideal Q such that I ⊆ Q ⊆ P . Clearly,

P 2 ⊆ I ⊆ Q ⊆ P.

Let x ∈ P . Then x2 ∈ P 2 and hence, x2 ∈ Q. Since Q is prime, we get x ∈ Q.
Therefore, P = Q and so the claim is proved. Clearly, IM ⊆ I ⊆ P . Now by
Part (1) IM = P and so I = P .
⇐) Suppose that I ∈ 2-MinR(P 2) such that P is a minimal prime ideal over

I. Since
√
I is a prime ideal of R and since P ∈ MinR(I), we conclude that√

I = P . Hence by hypothesis, (
√
I)2 = P 2 ⊆ I ⊆ P and so (by (2)) I = P .

Since P 2 ⊆ PM ⊆ I = P and PM is 2-prime (by Lemma 3.2), we conclude
that PM = IM = P . �

We close this paper with the following corollary.

Corollary 3.8. Let (R,M) be a quasi-local ring and I ∈ 2-MinR(P 2), for
every P -2-prime ideal I. Then R is a 2-P ring if and only if I = P , for every
ideal I ∈ 2-MinR(P 2) such that I ⊆ P .

Proof. The proof follows from Theorems 3.4 and 3.7. �
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