
Korean J. Math. 29 (2021), No. 2, pp. 305–320
http://dx.doi.org/10.11568/kjm.2021.29.2.305

ON L-FUZZY SEMI-PRIME IDEALS OF A POSET AND

SEPARATION THEOREMS

Derso Abeje Engidaw and Tilahun Bimerew Alemu

Abstract. In this paper, the relations between L-fuzzy semi-prime (respectively,
L-fuzzy prime) ideals of a poset and L-fuzzy semi-prime (respectively, L-fuzzy prime)
ideals of the lattice of all ideals of a poset are established. A result analogous to
Separation Theorem is obtained using L-fuzzy semi-prime ideals.

1. Introduction

Fuzzy set theory was first introduced by L. A. Zadeh in 1965 as an extension
of the classical notion of set theory [38]. He defined a fuzzy subset of a nonempty
set S as a function from S to a unit interval [0, 1] of real numbers. J. A. Goguen
in [20] introduced the notion of L-fuzzy subsets by replacing the unit interval [0, 1]
by a complete lattice L in the definition of fuzzy subsets. Swamy and Swamy [37]
initiated that complete lattices satisfying the infinite meet distributive law are the
most appropriate candidates to have the truth values of general fuzzy statements.

The study of fuzzy sub-algebras of various algebraic structure has been started
after Rosenfeld wrote his seminal paper [34] on fuzzy subgroups. This paper has
provided sufficient motivations to researchers to study the fuzzy sub-algebras of dif-
ferent algebraic structures, like rings, modules, vector-spaces, lattices, and more re-
cently in MS-algebras, universal algebras and pseudo-complemented semi-lattice etc.
(See [18, 19, 29, 30, 37], [1, 14, 32], [16, 25], [2, 12, 15, 28, 36], [6, 7], [3–5], [13] ). B. A
Alaba et al. introduced several generalizations of L-fuzzy ideals and filters of a poset
whose truth values are in a complete lattice satisfying the infinite meet distributive
law.(See [8] and [9]). In addition in [10] and [11], we introduced certain comprehensive
results on the notion of L-fuzzy prime ideals and L-fuzzy semiprime ideals of a poset.

Initiated by the above ideas and concepts, in this paper, we establish the relations
between the L-fuzzy semi-prime (respectively, L-fuzzy prime) ideals of a poset and
the L-fuzzy semi-prime (respectively, L-fuzzy prime) ideals of lattices of all ideals of
a poset and some counter examples are also given. We also extend and prove an
analogue of Stone’s Theorem for finite posets which has been studied by V. S. Kharat
and K. A. Mokbel [26] using L-fuzzy semi-prime ideals.
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2. Preliminaries

For the necessary concepts, terminologies and notations, we refer to [17] and [21].
A pair (Q,≤) is called a partially ordered set or simply a poset if Q is a non-empty
set and ” ≤ ” is a partial order on Q. An element x ∈ Q is called a lower bound of S
if x ≤ s for all s ∈ S. An upper bound is defined dually. The set of all lower bounds
of S is denoted by Sl and the set of all upper bounds of S by Su. By the sets Sul and
Slu we mean {Su}l and {Sl}u, respectively. For any a, b ∈ Q, the sets {a}l and {a, b}l
are denoted by al and (a, b)l, respectively. Further for subsets S, T of Q, {S ∪ T}l is
denoted by {S, T}l and the set {S∪{a}}l is denoted by {S, a}l. Similar notations are
used for the set of all upper bounds of subsets of a poset Q.

For any subsets S, T of a poset Q, we note that, S ⊆ Sul and S ⊆ Slu and if S ⊆ T
in Q then Su ⊇ T u and Sl ⊇ T l. In addition,{au}l = al and {al}u = au. An element
x0 in Q is called the least upper bound S or supremum of S, denoted by supS, if
x0 ∈ Su and x0 ≤ x ∀x ∈ Su. Dually we have the concept of the greatest lower bound
of S or infimum of S which is denoted by infS. For x, y ∈ Q, we write x ∧ y ( read
as ’x meet y’) in place of inf{x, y} if it exists and x ∨ y ( read as ”x join y”) in place
of sup{x, y} if it exists. A poset Q is said to be a join-semi-lattice (respectively, a
meet-semi-lattice ) if x ∨ y (respectively, x ∧ y) exists for all x, y ∈ Q and is said to
be a lattice if it is both a join-semi-lattice and a meet-semi-lattice.

An element x0 in Q is called the smallest (respectively, the largest) element of a
poset Q if x0 ≤ x (respectively, x ≤ x0) for all x ∈ Q. The smallest (respectively, the
largest) element if it exists in Q is denoted by 0 (respectively, by 1). A poset (Q ≤)
is called bounded if it has 0 and 1.

A subset S of a poset Q is said to be a down-set if it is decreasing, in the sense
that s ∈ S and t ≤ s imply that t ∈ S.

Definition 2.1. [23] A subset I of a poset (Q,≤) is called an ideal in Q if (a, b)ul ⊆
I whenever a, b ∈ I.

We consider the following sets that are studied in [22]. For any ideals I and J of
a poset Q, define subsets of Q by:
C1(I, J) =

⋃
{(a, b)ul : a, b ∈ I ∪ J} and Cn+1(I, J) =

⋃
{(a, b)ul : a, b ∈ Cn(I, J)}

for each n ∈ N, inductively.
It is easy to observe that the set {Cn(I, J) : n ∈ N} forms a chain and each Cn(I, J)

is a down set of Q.
We state the following concepts that are essentially introduced for lattices by Rav

[33].
Let Q be a given poset and (I(Q),⊆) be the lattice of all ideals of a poset. Define

an extension of an ideal I of Q, denoted by Ie, as

Ie = {J ∈ I(Q) : J ⊆ I}
and for an ideal λ of the lattice (I(Q),⊆) of all ideals of a poset Q, define the
contraction of λ, denoted by λc, as

λc =
⋃
{J : J ∈ λ}.

Definition 2.2. [24] A proper ideal P of a poset Q is called prime, if for all
a, b ∈ Q, (a, b)l ⊆ P implies either a ∈ P or b ∈ P .

Now, we consider the concept of a semi-prime ideal introduced by V. S. Khart and
K. A. Mokbel in a poset and by Y. Rav in a lattice, as given in the following.
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Definition 2.3. [27] A proper ideal I of a poset Q is called a semi-prime ideal of
Q if for all x, y, z ∈ Q,

(x, y)l ⊆ I and (x, z)l ⊆ I imply {x, (y, z)u}l ⊆ I.

Dually we have the concept semi-prime filter of a poset Q.

Definition 2.4. [33] A proper ideal I of a lattice X is called a semi-prime ideal
of X if for all x, y, z ∈ X,

x ∧ y ∈ I and x ∧ z ∈ I together imply x ∧ (y ∨ z) ∈ I.
Dually we have the concept semi-prime filter of a lattice X.

Throughout this paper L stands for a complete lattice satisfying the infinite meet
distributive law, Q stands for a poset with 0 unless otherwise stated and I(Q) stands
for the lattice of all ideals of Q.

By an L-fuzzy subset µ of a poset Q, we mean a mapping from Q into L. We
denote the set of L- fuzzy subsets of Q by LQ. For each α ∈ L, the α-level subset of
µ, which is denoted by µα, is a subset of Q given by: µα = {x : µ(x) ≥ α}.

For fuzzy subsets µ and σ of Q, we write µ ⊆ σ to mean µ(x) ≤ σ(x) for all x ∈ Q
in the ordering of L. It can be easily verified that ” ⊆ ” is a partial order on the set
LQ and is called the point wise ordering. We write µ ⊂ σ if µ ⊆ σ and µ 6= σ.

An L- fuzzy subset µ of Q is said to have the sup property if for every non-empty
subset A of Q, the supremum of {µ(x) : x ∈ A} is attained at a point of A.

Definition 2.5. [36] An L-fuzzy subset µ of a lattice X with 0 is said to be an L
-fuzzy ideal of X, if µ(0) = 1 and µ(a ∨ b) = µ(a) ∧ µ(b) for all a, b ∈ X.

Dually, an L-fuzzy subset µ of a lattice X with 1 is said to be an L -fuzzy filter of
X, if µ(1) = 1 and µ(a ∧ b) = µ(a) ∧ µ(b) for all a, b ∈ X.

Definition 2.6. ( [8], [9]) µ ∈ LQ is called an L- fuzzy ideal of Q if it satisfies the
following conditions:

1. µ(0) = 1
2. for any a, b ∈ Q , µ(x) ≥ µ(a) ∧ µ(b) for all x ∈ (a, b)ul.

Dually µ ∈ LQ, where Q is a poset with 1, is called an L- fuzzy filter of Q if it satisfies
the following conditions:

1. µ(1) = 1
2. for any a, b ∈ Q , µ(x) ≥ µ(a) ∧ µ(b) for all x ∈ (a, b)lu.

Definition 2.7. [9] An L-fuzzy filter µ is called an l-L-fuzzy filter if for any
a, b ∈ Q, there exists x ∈ (a, b)l such that µ(x) = µ(a) ∧ µ(b).

Lemma 2.8. [8] µ ∈ LQ is an L- fuzzy ideal of Q if and only if µα is an ideal of Q,
for all α ∈ L.

Lemma 2.9. [8] If µ is an L- fuzzy ideal of Q, then µ is anti-tone. That is,
µ(x) ≥ µ(y) whenever x ≤ y.

Note that for any α in L, the constant L-fuzzy subset of Q which maps all elements
of Q onto α is denoted by α.

Definition 2.10. [10] An L-fuzzy ideal µ of a poset Q is called proper, if µ is not
the constant map 1.
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Definition 2.11. [10] A proper L-fuzzy ideal µ of a poset Q is called an L-fuzzy
prime, if for any a, b ∈ Q,

inf{µ(x) : x ∈ (a, b)l} = µ(a) or µ(b).

Definition 2.12. [28] A proper L-fuzzy ideal µ of a lattice X is called L-fuzzy
prime, if for any a, b ∈ Q,

µ(a ∧ b) = µ(a) or µ(b).

Definition 2.13. [11] An L-fuzzy ideal µ of a poset Q is called an L-fuzzy semi-
prime ideal if for all a, b, c ∈ Q,

µ(z) ≥ inf{µ(x) ∧ µ(y) : x ∈ (a, b)l, y ∈ (a, c)l} ∀z ∈ {a, (b, c)u}l.

Dually we have the concept of L-fuzzy semi-prime filter of a poset Q.

Lemma 2.14. [11] An L- fuzzy ideal µ of Q is an L- fuzzy semi-prime ideal of Q if
and only if µα is a semi-prime ideal of Q for all α ∈ L.

Definition 2.15. [11] An L-fuzzy ideal µ of a lattice X is called an L-fuzzy semi-
prime ideal, if for all a, b, c ∈ Q,

µ(a ∧ (b ∨ c)) = µ(a ∧ b) ∧ µ(a ∧ c).
Dually we have the concept of L-fuzzy semi-prime filter of a lattice X.

Lemma 2.16. Let µ be an L- fuzzy ideal of Q. Then for any a, b ∈ Q,

inf{µ(x) : x ∈ (a, b)l} = µ(a ∧ b),
whenever a ∧ b exists in Q.

3. On L-Fuzzy Semi-prime Ideals of a Poset

In this section we study the relations between L-fuzzy semi-prime (respectively,
L-fuzzy prime) ideals of a poset and L-fuzzy semi-prime (respectively, L-fuzzy prime)
ideals of the lattice of all ideals of a poset are established. Some counter examples
are also given.

We begin by introducing the notion of an extension of an L-fuzzy ideal of a poset
and a contraction of an L-fuzzy ideal of a lattice of all ideals of a poset.

Definition 3.1. Let µ is an L-fuzzy ideal of Q and Φ is an L-fuzzy ideal of I(Q).
Then

1. an extension of µ of Q, denoted by µe, is an L -fuzzy subset of I(Q) given by:
for all I ∈ I(Q),

µe(I) = inf{µ(x) : x ∈ I}
2. a contraction of Φ of I(Q), denoted by Φc, is an L-fuzzy subset of Q given by:

for all x ∈ Q,
Φc(x) = sup{Φ(I) : x ∈ I}.

Lemma 3.2. Let µ be an L-fuzzy ideal of Q. Then

(µe)α = (µα)e

for all α ∈ L.

Lemma 3.3. Let Φ be an L-fuzzy ideal of I(Q) with sup property and α ∈ L.
Then (Φc)α = (Φα)c
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Lemma 3.4. Let µ be an L-fuzzy ideal Q. Then its extension µe is an L-fuzzy ideal
of I(Q).

Proof. Now µe((0]) = inf{µ(x) : x ∈ (0]} = µ(0) = 1. Let I, J ∈ I(Q). Then

µe(I) = inf{µ(x) : x ∈ I}
≥ inf{µ(x) : x ∈ I ∨ J}
= µe(I ∨ J)

and similarly we have µe(J) ≥ µe(I ∨ J). Thus µe(I) ∧ µe(J) ≥ µe(I ∨ J). Again to
show the other inequality put α = µe(I) ∧ µe(J). Now

α = µe(I) ∧ µe(J) ⇒ α ≤ µe(I) = inf{µ(x) : x ∈ I} and

α ≤ µe(J) = inf{µ(y) : y ∈ I}
⇒ α ≤ µ(x) for all x ∈ I and α ≤ µ(y) for all y ∈ J
⇒ I ⊆ µα and ‘J ⊆ µα

⇒ I ∪ J ⊆ µα

⇒ I ∨ J ⊆ µα

⇒ I ∨ J ∈ (µα)e = (µe)α

⇒ µe(I ∨ J) ≥ α = µe(I) ∧ µe(J)

Therefore µe(I ∨ J) = µe(I) ∧ µe(J). Hence µe is an L-fuzzy ideal I(Q).

Lemma 3.5. Let Φ be an L-fuzzy ideal of I(Q). Then Φc is an L-fuzzy ideal of Q.

Proof. Now since

Φc(0) = sup{Φ(I) : 0 ∈ I}
≥ Φ((0])

= 1

we have Φc(0) = 1. Again let a, b ∈ Q and x ∈ (a, b)ul. Now

Φc(a) ∧ Φc(b) = sup{Φ(I) : a ∈ I} ∧ sup{Φ(J) : b ∈ J}
= sup{Φ(I) ∧ Φ(J) : a ∈ I, b ∈ J}
= sup{Φ(I ∨ J) : a ∈ I, b ∈ J}
≤ sup{Φ(I ∨ J) : x ∈ (a, b)ul ⊆ I ∨ J}
≤ sup{Φ(K) : x ∈ K}
= Φc(x)

Therefore Φc is an L-fuzzy ideal of Q.

Lemma 3.6. Let µ be an L-fuzzy ideal of a poset Q. Then µec = µ.

Proof. Let µ be an L-fuzzy ideal of a poset Q. Now we claim that µec = µ.
Now for any x ∈ Q, we have

(µec)(x) = (µe)c(x)

= sup{µe(I) : x ∈ I, I ∈ I(Q)}
≥ µe((x])

= inf{µ(y) : y ∈ (x]} = µ(x).
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Thus we have µec ⊇ µ. Again for any x ∈ Q, put Sx = {I ∈ I(Q) : x ∈ I}.
Clearly Sx is non empty. Now for any I ∈ Sx, we have µ(x) ≥ inf{µ(y) : y ∈ I} =
µe(I). This implies that

µ(x) ≥ sup{µe(I) : I ∈ Sx} = sup{µe(I) : x ∈ I} = (µe)c(x).

Therefore µ ⊇ µec. Hence the claim is true.

We use the following Lemma in the result followed by it which is a relation between
L-fuzzy semi-prime ideals of Q and L-fuzzy semi-prime ideals of a poset.

Lemma 3.7. [22] Let Q be a poset and I, J ∈ I(Q). Then the supremum I ∨ J of
I and J in I(Q) is given by:

I ∨ J =
⋃
{{Cn(I, J) : n ∈ N}

Theorem 3.8. Let µ be an L-fuzzy semi-prime ideal of Q. Then µe is an L-fuzzy
semi-prime ideal of I(Q).

Proof. Let I, J,K ∈ I(Q). Now we prove that

µe(I ∩ J) ∧ µe(I ∩K) = µe(I ∩ (J ∨K)).

Since µe is an L-fuzzy ideal of I(Q) and I ∩J ⊆ I ∩ (J ∨K) and I ∩K ⊆ I ∩ (J ∨K)
we clearly have

µe(I ∩ J) ∧ µe(I ∩K) ≥ µe(I ∩ (J ∨K)).

Again to show the other inequality it is enough to show that for each n ∈ N

µe(I ∩ J) ∧ µe(I ∩K) ≤ µ(x) for all x ∈ I ∩ Cn(J,K),

in view of Lemma 3.7. We use induction on n.

1. Let n = 1 and x ∈ I∩C1(J,K). Then x ∈ I and x ∈ (a, b)ul for some a, b ∈ J∪K.
If a, b ∈ J or K, then obviously µe(I ∩J)∧µe(I ∩K) ≤ µ(x). So, let us suppose
without loss of generality, that a ∈ J and b ∈ K. Then (x, a)l ⊆ I ∩ J and
(x, b)l ⊆ I ∩K. By L-fuzzy semi-primness of µ, we have

µe(I ∩ J) ∧ µe(I ∩K) = inf{µ(y) : y ∈ I ∩ J} ∧ inf{µ(y) : y ∈ I ∩K}
≤ inf{µ(y) : y ∈ (x, a)l} ∧ inf{µ(z) : z ∈ (x, b)l}
≤ inf{µ(y) ∧ µ(z) : y ∈ (x, a)l, z ∈ (x, b)l}
≤ µ(x)

Thus the statement is true for n = 1.
2. Suppose that µe(I ∩ J) ∧ µe(I ∩ K) ≤ µ(x) for all x ∈ I ∩ Cn(J,K) holds for

some n ∈ N. We will prove that it also holds for n+1. Now x ∈ I ∩ Cn+1(J,K)
implies that x ∈ I and x ∈ (a, b)ul for some a, b ∈ Cn(J,K). This implies that
(x, a)l,⊆ I∩Cn(J,K) and (x, b)l ⊆ I∩Cn(J,K). Thus, by induction hypothesis,
we have

µe(I ∩ J) ∧ µe(I ∩K) ≤ µ(y) for all y ∈ (x, a)l

and

µe(I) ∧ µe(J) ≤ µ(z) for all z ∈ (x, b)l
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and since µ is L-fuzzy semi-prime and x ∈ {x, (a, b)u}l we have

µe(I ∩ J) ∧ µe(I ∩K) ≤ inf{µ(y) ∧ µ(z) : y ∈ (x, a)l, z ∈ (x, b)l

≤ µ(x).

Therefore µe(I ∩ J)∧ µe(I ∩K) ≤ µ(x) for all x ∈ I ∩Cn(J,K) for each n ∈ N.
Thus we have

µe(I ∩ J) ∧ µe(I ∩K) ≤ inf{µ(x) : x ∈
⋃
{I ∩ Cn(J,K) : n ∈ N}}

≤ inf{µ(x) : x ∈ I ∩
⋃
{Cn(J,K) : n ∈ N}

= inf{µ(x) : x ∈ I ∩ (J ∨K)}
= µe(I ∩ (J ∨K))

Therefore µe(I∩J)∧µe(I∩K) = µe(I∩(J∨K)) and hence µe is an L-fuzzy semi-prime
ideal of the lattice I(Q).

Theorem 3.9. Let Q be a finite poset and let Φ be an L-fuzzy semi-prime ideal
of I(Q) with sup property. Then Φc is an L-fuzzy semi-prime ideal of Q.

Proof. Clearly Φc is an L-fuzzy ideal of Q ,by Lemma 3.5. Now we show that Φc

is an L-fuzzy semi-prime ideal Q. Let a, b, c ∈ Q and z ∈ {a, (b, c)u}l. Now put

α = inf{Φc(x) ∧ Φc(y) : x ∈ (a, b)l, y ∈ (a, c)l}.

Then it is clear that

Φc(x) ≥ α for all x ∈ (a, b)l and Φc(y) ≥ α for all y ∈ (a, c)l.

This implies that (a, b)l ⊆ (Φc)α = (Φα)c and (a, c)l ⊆ (Φc)α = (Φα)c. Since Q is
finite and (Φα)c =

⋃
{I : I ∈ Φα}, there exist I1, I2, · · · , In and J1, J2, · · · , Jm in Φα

such that

(a] ∩ (b] = (a, b)l ⊆
n⋃
i=1

Ii ⊆
n∨
i=1

Ii ∈ Φα

and

(a] ∩ (c] = (a, c)l ⊆
m⋃
j=1

Jj ⊆
m∨
j=1

Jj ∈ Φα.

Since Φα a semi-prime ideal of I(Q), we have (a] ∩ ((b] ∨ (c]) ∈ Φα. Now

z ∈ {a, (b, c)u}l ⇒ z ∈ (a] ∩ ((b] ∨ (c]) ∈ Φα

⇒ z ∈ (Φα)c = (Φc)α

⇒ Φc(z) ≥ α

⇒ Φc(z) ≥ inf{Φc(x) ∧ Φc(y) : x ∈ (a, b)l, y ∈ (a, c)l}

Hence Φc is an L-fuzzy semi-prime ideal of a poset Q.

Remark 3.10. The finiteness conditions in the statement of the Theorem 3.9 is
necessary. For example consider the infinite poset depicted in the Fig. 3.1 and its
ideal lattice I(Q) in Fig. 3.2 given below.
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Fig. 3.1

Fig. 3.2

Let L = [0, 1]. Then consider the L- fuzzy subset Φ of I(Q) given by:

Φ(I) =


1 if I = (y1]

1−
1
2
i

1 + i
if I = (yi] i = 2, 3, · · ·

0 if otherwise

,

for all I ∈ I(Q), which is an L-fuzzy semi-prime ideal of I(Q). Then its contraction,
Φc, is given by:

Φc(x) =


1 if x = y1

1−
1
2
i

1 + i
if x = yi i = 2, 3, · · ·

0 if otherwise
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for all x ∈ Q. But Φc is not an L-fuzzy semi-prime ideal of a poset Q as a ∈ al =
{a, (b, c)u}l but Φc(a) = 0 � 1

2
= inf{Φc(x) ∧ Φc(y) : x ∈ (a, b)l, y ∈ (a, c)l}.

However, if Q is a meet semi-lattice, we have the following theorem.

Theorem 3.11. Let Q be a meet semi-lattice and Φ be an L-fuzzy semi-prime
ideal of I(Q) with sup property. Then Φc is an L-fuzzy semi-prime ideal of Q.

Proof. Let Φ be an L-fuzzy semi-prime ideal of I(Q). Let a, b, c ∈ Q and z ∈
{a, (b, c)u}l. Since Q is a meet semi-lattice it is clear that

inf{Φc(x) ∧ Φc(y) : x ∈ (a, b)l, y ∈ (a, c)l} = Φc(a ∧ b) ∧ Φc(a ∧ c).
Now put α = Φc(a ∧ b) ∧ Φc(a ∧ c). Then we have

Φc(a ∧ b) ≥ α and Φc(a ∧ c) ≥ α .

This implies that

(a] ∩ (b] = (a ∧ b] ⊆ (Φc)α = (Φα)c and (a] ∩ (c] = (a ∧ c] ⊆ (Φc)α = (Φα)c.

Thus there exist I, J in Φα such that (a]∩ (b] ⊆ I and (a]∩ (c] ⊆ J . This implies that
(a] ∩ (b], (a] ∩ (c] ∈ Φα . Since Φα a semi-prime ideal of I(Q), (a] ∩ ((b] ∨ (c]) ∈ Φα.
Now

z ∈ {a, (b, c)u}l ⇒ z ∈ (a] ∩ ((b] ∨ (c]) ∈ Φα

= z ∈ (Φα)c = (Φc)α

= Φc(z) ≥ α = Φc(a ∧ b) ∧ Φc(a ∧ c)
Therefore Φc is an L-fuzzy semi-prime ideal of a meet semi-lattice Q.

We also investigate the relationships between L-fuzzy prime ideal of a poset Q and
L-fuzzy prime ideal of the lattice I(Q) in the next two theorems.

Theorem 3.12. Let µ be an L-fuzzy prime ideal of a poset Q. Then µe is an
L-fuzzy prime ideal of the lattice I(Q).

Proof. Let µ be an L-fuzzy prime ideal of a poset Q. Let I, J ∈ I(Q).
We need to show that

µe(I ∩ J) = µe(I) or µe(J).

Indeed, on the contrary if both µe(I ∩ J) 6= µe(I) and µe(I ∩ J) 6= µe(J), then there
exist a, b ∈ Q such that a ∈ I, b ∈ J and µe(I ∩ J) � µ(a) and µe(I ∩ J) � µ(b).
This implies that

µ(x) � µ(a) and µ(x) � µ(b) for all x ∈ I ∩ J.

Since (a, b)l ⊆ I ∩ J , we have inf{µ(x) : x ∈ (a, b)l} � µ(a) and inf{µ(x) : x ∈
(a, b)l} � µ(b), which contradicts the fact that µ is an L-fuzzy prime ideal of a poset
Q. Therefore µe is an L-fuzzy prime ideal of the lattice I(Q).

Theorem 3.13. Let Q be a finite poset and Φ be an L-fuzzy prime ideal of I(Q)
with sup property. Then Φc is an L-fuzzy prime ideal of Q.

Proof. Suppose that Φ is an L-fuzzy prime ideal of I(Q) where Q is a finite poset.
Then, by Lemma 3.5, Φc is an L-fuzzy ideal of Q. Let a, b ∈ Q and put α = inf{Φc(x) :
x ∈ (a, b)l}. This implies that
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Φc(x) ≥ α for all x ∈ (a, b)l.

Thus we have (a, b)l ⊆ (Φc)α = (Φα)c. Since Q is finite and (Φα)c =
⋃
{I : I ∈ Φα},

there exist I1, I2, · · · , In such that

(a] ∩ (b] = (a, b)l ⊆
⋃n
i=1 Ii ⊆

∨n
i=1 Ii ∈ Φα

Since Φα a prime ideal of I(Q), we have either (a] ∈ Φα or (b] ∈ Φα. Consequently
(a] ⊆ (Φα)c = (Φc)α or (b] ⊆ (Φα)c = (Φc)α and therefore

Φc(a) ≥ α = inf{Φc(x) : x ∈ (a, b)l} ≥ Φc(a)

or

Φc(b) ≥ α = inf{Φc(x) : x ∈ (a, b)l} ≥ Φc(b),

that is, inf{Φc(x) : x ∈ (a, b)l} = Φc(a) or Φc(b). Hence Φc is an L-fuzzy prime ideal
of a poset Q.

Remark 3.14. The statement of Theorem 3.13 is not necessarily true if the poset
Q is not finite. Consider the infinite poset Q depicted in Fig.3.1 and its ideal lattice
I(Q) in Fig. 3.2 on pages 10 and 11. Observe that the L- fuzzy subset Φ of I(Q)
into L = [0, 1] defined by:

Φ(I) =


1 if I = (y1]

1−
1
3
i

1 + i
if I = (yi], i = 2, 3, · · ·

0 if otherwise

for all I ∈ I(Q) is an L-fuzzy prime ideal of I(Q).
Also see that Φc is given by:

Φc(x) =


1 if x = y1

1−
1
3
i

1 + i
if x = yi, i = 2, 3, · · ·

0 if otherwise

for all x ∈ Q is an L-fuzzy ideal of Q but not L-fuzzy prime ideal, as inf{Φc(x) : x ∈
(a, b)l} = 2

3
and neither equal to Φc(a) nor Φc(b).

However, if the poset is a meet semilattice, then we have the following theorem.

Theorem 3.15. Let Q be a meet semi-lattice and Φ be an L-fuzzy prime ideal of
I(Q) with sup property. Then Φc is an L-fuzzy prime ideal of Q.

Proof. Suppose that Φ is an L-fuzzy prime ideal of I(Q) with sup property Now
we claim that Φc(a ∧ b) = Φc(a) or Φc(b), for all a, b ∈ Q. Now put α = Φc(a ∧ b).
This implies that a∧ b ∈ (Φc)α = (Φα)c. Thus there exists I ∈ Φα such that a∧ b ∈ I.
Therefore (a] ∩ (b] = (a ∧ b] ⊆ I ∈ Φα and hence (a] ∩ (b] ∈ Φα.
Now, by primeness of Φα, we must have (a] ∈ Φα or (b] ∈ Φα and so a ∈ (Φα)c =
(Φc)α or b ∈ (Φα)c = (Φc)α. This implies that

Φc(a) ≥ α = Φc(a ∧ b) ≥ Φc(a) or Φc(b) ≥ α = Φc(a ∧ b) ≥ Φc(b),

i.e. Φc(a ∧ b) = Φc(a) or Φc(b). Hence Φc is an L-fuzzy prime ideal of Q.
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4. Separation Theorems

In this section, we extend and prove an analogue of Stone’s Theorem for finite
posets which has been studied by V. S. Kharat and K. A. Mokbel [26] using L-fuzzy
semi-prime ideals. Some counter examples are also given.

Now we obtain an L-fuzzy filter in a poset Q with the help of an L-fuzzy filter
in the lattice I(Q) of all L-fuzzy ideals of Q and study the L-fuzzy semi-primeness
connection between them.

Definition 4.1. Let Q be a poset with 1 and ΦF be an L-fuzzy filter of I(Q).
Define an L-fuzzy subset µF of Q by:

µF (x) = ΦF ((x]) for all x ∈ Q.

We have the following Lemma.

Lemma 4.2. Let Q be a poset with 1. Then µF is an L-fuzzy filter of Q, where µF
is an L-fuzzy subset of Q given in Definition 4.1 above.

Proof. Clearly µF (1) = 1. Let a, b ∈ Q and x ∈ (a, b)lu. This implies that
(a] ∩ (b] = (a, b)l ⊆ xl = (x]. Thus

µF (a) ∧ µF (b) = ΦF ((a]) ∧ ΦF ((b])

= ΦF ((a] ∩ (b])

≤ ΦF ((x])

= µF (x)

Therefore µF is an L-fuzzy filter of Q.

In the case of finite posets we have the following.

Lemma 4.3. Let Q be a finite poset and ΦF be an L-fuzzy filter of I(Q) and µF
be an L-fuzzy filter given as in Definition 4.1 above. Then the following statements
hold.

1. ΦF ((a] ∨ (b]) = inf{µF (x) : x ∈ (a, b)u} for any a, b ∈ Q.
2. if ΦF is an L-fuzzy semi-prime filter, then µF is an L-fuzzy semi-prime filter.

Proof. 1. Let a, b ∈ Q. Since Q is finite, (a, b)u is finite and hence we clearly
have

⋂
x∈(a,b)u(x] ⊆ (a, b)ul ⊆ (a] ∨ (b]. Thus

inf{µF (x) : x ∈ (a, b)u} = inf{ΦF ((x]) : x ∈ (a, b)u}
= ΦF (

⋂
x∈(a,b)u

(x])

≤ ΦF ((a] ∨ (b])

Again let x ∈ (a, b)u. Then a ≤ x and b ≤ x and hence (a] ⊆ (x] and (b] ⊆ (x].
This implies that (a]∨(b] ⊆ (x] for all x ∈ (a, b)u and thus (a]∨(b] ⊆

⋂
x∈(a,b)u(x].

Since ΦF is an L-fuzzy filter of I(Q) and hence isotone, we have

ΦF ((a] ∨ (b]) ≤ ΦF (
⋂

x∈(a,b)u
(x])

= inf{ΦF ((x]) : x ∈ (a, b)u}
= inf{µF (x) : x ∈ (a, b)u}
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Hence (1) holds.
2. Let a, b, c ∈ Q and z ∈ {a, (b, c)l}u. Then it is clear that (a] ⊆ (z] and (b]∩ (c] ⊆

(z]. Thus we have (a] ∨ ((b] ∩ (c]) ⊆ (z].

inf{µF (x) ∧ µF (y) : x ∈ (a, b)u, y ∈ (a, c)u}
= inf{µF (x) : x ∈ (a, b)u} ∧ inf{µF (y) : y ∈ (a, c)u}
= ΦF ((a] ∨ (b]) ∧ ΦF ((a] ∨ (c]) · · · (by 1 )

= ΦF ((a] ∨ ((b] ∩ (c]))

≤ ΦF ((z]) = µF (z)

Hence (2) holds.

Remark 4.4. We give an example to show that the assertion of Lemma 4.3 is not
necessarily true if we drop the finiteness condition. Consider the dual of the infinite
poset Q that is depicted in Fig 3.1, say Qd and its ideal lattice I(Qd) which is the
dual of the ideal lattice I(Q) depicted in Fig 3.2. Consider the L- fuzzy filter ΦF of
I(Qd) into L = [0, 1] which is given by:

ΦF (I) =


1 if I = (y1]

1−
1
3
i

1 + i
if I = (yi] for i = 2, 3, · · ·

0 if otherwise

for all I ∈ I(Qd). Observe that the L-fuzzy subset µF of Qd into L = [0, 1] which is
given by:

µF (x) =


1 if x = y1

1−
1
3
i

1 + i
if x = yi for i = 2, 3, · · ·

0 if otherwise

for all x ∈ Q is an L-fuzzy filter of Qd. But

ΦF ((a] ∨ (b]) = ΦF (({y1, y2, · · · }]) = 0 6= 2
3

= inf{µF (z) : z ∈ (a, b)u}.
Moreover, ΦF is an L-fuzzy semi-prime filter of I(Qd). But µF is not an L-fuzzy
semi-prime filter, as a ∈ au = {a, (b, c)l}u and

µF (a) = 0 � 2
3

= inf{µF (x) ∧ µF (y) : x ∈ (a, b)u, y ∈ (a, c)u.

However, in the case of join semi-lattices we have the following corollary.

Corollary 4.5. Let Q be a join semi-lattice with 1, ΦF be an L-fuzzy filter of
I(Q) and µF be an L-fuzzy filter defined as in in Definition 4.1. Then the following
statements hold.

1. ΦF ((a] ∨ (b]) = µF (a ∨ b) for any a, b ∈ Q.
2. if ΦF is an L-fuzzy semi-prime filter, then µF is an L-fuzzy semi-prime filter.

Now we obtain an L-fuzzy filter in the lattice I(Q) of all L-fuzzy ideals of Q using
an l-L-fuzzy filter of a poset Q with 1.

Definition 4.6. Let σ be an l-L-fuzzy filter of a poset Q with 1, Define an L-fuzzy
subset Ω of I(Q) as follows:

Ω(I) = sup{σ(x) : x ∈ I} for all‘I ∈ I(Q).
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We establish the following result.

Lemma 4.7. Let Q be a poset with 1. Then Ω is an L-fuzzy filter of I(Q), where
Ω is an L-fuzzy subset of I(Q) as given in Definition 4.6 given above.

Proof. Let σ be an l-L-fuzzy filter of a poset Q. Then clearly Ω((1]) = 1.
Let I, J ∈ I(Q). Then

Ω(I) ∧ Ω(J) = sup{σ(x) : x ∈ I} ∧ sup{σ(y) : y ∈ J}
= sup{σ(x) ∧ σ(y) : x ∈ I, y ∈ J}
≤ sup{σ(x) ∧ σ(y) : (x, y)l ⊆ I ∩ J}

Since σ is an l-L-fuzzy filter of Q and x, y ∈ Q, there there exists z ∈ (x, y)l such that
σ(z) = σ(x) ∧ σ(y). Therefore

Ω(I) ∧ Ω(J) ≤ sup{σ(z) : z ∈ I ∩ J} = Ω(I ∩ J)

Again

Ω(I ∩ J) = sup{σ(x) : x ∈ I ∩ J}
≤ sup{σ(x) : x ∈ I}
= Ω(I)

Therefore Ω(I ∩ J) ⊆ Ω(I). Similarly we can show that Ω(I ∩ J) ⊆ Ω(J) and hence
Ω(I ∩ J) ⊆ Ω(I) ∧ Ω(J). Therefore

Ω(I ∩ J) = Ω(I) ∧ Ω(J)

and hence Ω is an L-fuzzy filter of I(Q).

We prove the following lemma, which is analogous to Rav’s Separation Theorem
for semi-prime ideals in Lattice Theory. [33]

Lemma 4.8. Let α be a prime element in L, µ be an L-fuzzy semi-prime ideal and
σ be an L-fuzzy filter of a lattice X such that µ∩σ ⊆ α. Then there exists an L-fuzzy
semi-prime filter σF such that σ ⊆ σF and µ ∩ σF ⊆ α.

Proof. Let µ be an L-fuzzy semi-prime ideal and σ be an L-fuzzy filter of the lattice
X such that µ ∩ σ ⊆ α. Now put

I = {x ∈ X : µ(x) � α} and K = {x ∈ X : σ(x) � α}.

Then, clearly I is a semi-prime ideal and K is a filter of X such that I ∩K = ∅.
Therefore by Rav’s Separation Theorem for semi-prime ideals in Lattice, there exists
a semi-prime filter F such that K ⊆ F and I ∩ F = ∅. Then, note that the L-fuzzy
subset σF of X defined by:

(σF )(x) =

{
1 if x ∈ F
α if x /∈ F

for all x ∈ X is an l-fuzzy semi-prime filter. Now we claim that σ ⊆ σF and µ∩σF ⊆ α.
Let x ∈ X. Now if x ∈ F , then σ(x) ≤ 1 = σF (x) and, if x /∈ F , then x /∈ K, so that
σ(x) ≤ α = αF (x). Hence σ ⊆ αF . Again if x ∈ F , then x /∈ I, so that µ(x) ≤ α.
Thus

(µ ∩ σF )(x) = µ(x) ∧ σF (x) = µ(x) ∧ 1 = µ(x) ≤ α = α(x)
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and if x /∈ F , then

(µ ∩ σF )(x) ≤ µ(x) ∧ α ≤ α = α(x).

Hence µ ∩ σF ⊆ α. Therefore the claim is true.

Now we extend an analogue of Stone’s Theorem for finite posets which has been
studied by V. S. Kharat and K. A. Mokbel [26] using L-fuzzy semi-prime ideals as
given in Theorem 4.9 below.

Theorem 4.9. Let Q be a finite poset and α be a prime element in L. If µ be an
L-fuzzy semi-prime ideal and σ be an l-L-fuzzy filter of Q for which µ ∩ σ ⊆ α, then
there exists an L-fuzzy semi-prime filter σ′ of Q such that σ ⊆ σ′ and µ ∩ σ′ ⊆ α.

Proof. Suppose that µ is an L-fuzzy semi-prime ideal and σ is an l-L-fuzzy filter of
a finite poset Q such that µ∩σ ⊆ α, where α is a prime element in L. By Theorem 3.8,
µe is an L-fuzzy semi-prime ideal of I(Q). Since σ is an l-L-fuzzy filter, the L-fuzzy
subset Ω of I(Q) given in Definition 4.6 is an L-fuzzy filter of I(Q). (See Lemma
4.7). Now we claim that µe ∩ Ω ⊆ α. Suppose not. Then there exists I ∈ I(Q) such
that µe(I) � α and Ω(I) � α. This implies that

µ(x) � α for all x ∈ I and σ(x) � α for some x ∈ I.

This contradicts the hypothesis µ ∩ σ ⊆ α. Hence the claim holds. Now, since I(Q)
is a lattice, by Lemma 4.8, there exists an L-fuzzy semi-prime filter, say ΦF of I(Q)
such that Ω ⊆ ΦF and µe ∩ ΦF ⊆ α. Consider the L-fuzzy subset µF of Q given in
definition 4.1 which is an L-fuzzy semi-filter of Q. (See Lemma 4.2). Put σ′ = µF
and observe that σ ⊆ σ′; for, if x ∈ Q, then

σ(x) ≤ sup{σ(y) : y ∈ (x]} = Ω((x]) ≤ ΦF ((x]) = µF (x) = σ′(x).

Further, we must have µ∩σ′ ⊆ α. Otherwise if µ∩σ′ * α, there exists x ∈ Q such that
µ(x) � α and σ′(x) = µF (x) � α. This implies that µe((x]) � α and ΦF ((x]) � α,
which is a contradiction to the fact that µe ∩ ΦF ⊆ α.
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