• 제목/요약/키워드: Prime(semiprime) *-ring

검색결과 47건 처리시간 0.024초

Derivations with Power Values on Lie Ideals in Rings and Banach Algebras

  • Rehman, Nadeem ur;Muthana, Najat Mohammed;Raza, Mohd Arif
    • Kyungpook Mathematical Journal
    • /
    • 제56권2호
    • /
    • pp.397-408
    • /
    • 2016
  • Let R be a 2-torsion free prime ring with center Z, U be the Utumi quotient ring, Q be the Martindale quotient ring of R, d be a derivation of R and L be a Lie ideal of R. If $d(uv)^n=d(u)^md(v)^l$ or $d(uv)^n=d(v)^ld(u)^m$ for all $u,v{\in}L$, where m, n, l are xed positive integers, then $L{\subseteq}Z$. We also examine the case when R is a semiprime ring. Finally, as an application we apply our result to the continuous derivations on non-commutative Banach algebras. This result simultaneously generalizes a number of results in the literature.

GENERALIZED DERIVATIONS ON SEMIPRIME RINGS

  • De Filippis, Vincenzo;Huang, Shuliang
    • 대한수학회보
    • /
    • 제48권6호
    • /
    • pp.1253-1259
    • /
    • 2011
  • Let R be a prime ring, I a nonzero ideal of R and n a fixed positive integer. If R admits a generalized derivation F associated with a derivation d such that c for all x, $y{\in}I$. Then either R is commutative or n = 1, d = 0 and F is the identity map on R. Moreover in case R is a semiprime ring and $(F([x,\;y]))^n=[x,\;y]$ for all x, $y{\in}R$, then either R is commutative or n = 1, $d(R){\subseteq}Z(R)$, R contains a non-zero central ideal and for all $x{\in}R$.

NONADDITIVE STRONG COMMUTATIVITY PRESERVING DERIVATIONS AND ENDOMORPHISMS

  • Zhang, Wei;Xu, Xiaowei
    • 대한수학회보
    • /
    • 제51권4호
    • /
    • pp.1127-1133
    • /
    • 2014
  • Let S be a nonempty subset of a ring R. A map $f:R{\rightarrow}R$ is called strong commutativity preserving on S if [f(x), f(y)] = [x, y] for all $x,y{\in}S$, where the symbol [x, y] denotes xy - yx. Bell and Daif proved that if a derivation D of a semiprime ring R is strong commutativity preserving on a nonzero right ideal ${\rho}$ of R, then ${\rho}{\subseteq}Z$, the center of R. Also they proved that if an endomorphism T of a semiprime ring R is strong commutativity preserving on a nonzero two-sided ideal I of R and not identity on the ideal $I{\cup}T^{-1}(I)$, then R contains a nonzero central ideal. This short note shows that the conclusions of Bell and Daif are also true without the additivity of the derivation D and the endomorphism T.

DERIVATIONS ON NONCOMMUTATIVE BANACH ALGEBRAS

  • Choi, Young-Ho;Lee, Eun-Hwi;Ahn, Gil-Gwon
    • Journal of applied mathematics & informatics
    • /
    • 제7권1호
    • /
    • pp.305-317
    • /
    • 2000
  • It is well-known that every derivation on a commutative Banach algebra maps into its radical. In this paper we shall give the various algebraic conditions on the ring that every Jordan derivation on a noncommutative ring with suitable characteristic conditions is zero and using this result, we show that every continuous linear Jordan derivation on a noncommutative Banach algebra maps into its radical under the suitable conditions.

SKEW n-DERIVATIONS ON SEMIPRIME RINGS

  • Xu, Xiaowei;Liu, Yang;Zhang, Wei
    • 대한수학회보
    • /
    • 제50권6호
    • /
    • pp.1863-1871
    • /
    • 2013
  • For a ring R with an automorphism ${\sigma}$, an n-additive mapping ${\Delta}:R{\times}R{\times}{\cdots}{\times}R{\rightarrow}R$ is called a skew n-derivation with respect to ${\sigma}$ if it is always a ${\sigma}$-derivation of R for each argument. Namely, if n - 1 of the arguments are fixed, then ${\Delta}$ is a ${\sigma}$-derivation on the remaining argument. In this short note, from Bre$\check{s}$ar Theorems, we prove that a skew n-derivation ($n{\geq}3$) on a semiprime ring R must map into the center of R.

JORDAN DERIVATIONS ON A LIE IDEAL OF A SEMIPRIME RING AND THEIR APPLICATIONS IN BANACH ALGEBRAS

  • Kim, Byung-Do
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제23권4호
    • /
    • pp.347-375
    • /
    • 2016
  • Let R be a 3!-torsion free noncommutative semiprime ring, U a Lie ideal of R, and let $D:R{\rightarrow}R$ be a Jordan derivation. If [D(x), x]D(x) = 0 for all $x{\in}U$, then D(x)[D(x), x]y - yD(x)[D(x), x] = 0 for all $x,y{\in}U$. And also, if D(x)[D(x), x] = 0 for all $x{\in}U$, then [D(x), x]D(x)y - y[D(x), x]D(x) = 0 for all $x,y{\in}U$. And we shall give their applications in Banach algebras.

P-STRONGLY REGULAR NEAR-RINGS

  • Dheena, P.;Jenila, C.
    • 대한수학회논문집
    • /
    • 제27권3호
    • /
    • pp.483-488
    • /
    • 2012
  • In this paper we introduce the notion of P-strongly regular near-ring. We have shown that a zero-symmetric near-ring N is P-strongly regular if and only if N is P-regular and P is a completely semiprime ideal. We have also shown that in a P-strongly regular near-ring N, the following holds: (i) $Na$ + P is an ideal of N for any $a{\in}N$. (ii) Every P-prime ideal of N containing P is maximal. (iii) Every ideal I of N fulfills I + P = $I^2$ + P.

ON DERIVATIONS IN NONCOMMUTATIVE SEMIPRIME RINGS AND BANACH ALGEBRAS

  • PARK, KYOO-HONG
    • 대한수학회보
    • /
    • 제42권4호
    • /
    • pp.671-678
    • /
    • 2005
  • Let R be a noncommutative semi prime ring. Suppose that there exists a derivation d : R $\to$ R such that for all x $\in$ R, either [[d(x),x], d(x)] = 0 or $\langle$$\langle(x),\;x\rangle,\;d(x)\rangle$ = 0. In this case [d(x), x] is nilpotent for all x $\in$ R. We also apply the above results to a Banach algebra theory.

THE SOURCE OF SEMIPRIMENESS OF RINGS

  • Aydin, Neset;Demir, Cagri;Camci, Didem Karalarlioglu
    • 대한수학회논문집
    • /
    • 제33권4호
    • /
    • pp.1083-1096
    • /
    • 2018
  • Let R be an associative ring. We define a subset $S_R$ of R as $S_R=\{a{\in}R{\mid}aRa=(0)\}$ and call it the source of semiprimeness of R. We first examine some basic properties of the subset $S_R$ in any ring R, and then define the notions such as R being a ${\mid}S_R{\mid}$-reduced ring, a ${\mid}S_R{\mid}$-domain and a ${\mid}S_R{\mid}$-division ring which are slight generalizations of their classical versions. Beside others, we for instance prove that a finite ${\mid}S_R{\mid}$-domain is necessarily unitary, and is in fact a ${\mid}S_R{\mid}$-division ring. However, we provide an example showing that a finite ${\mid}S_R{\mid}$-division ring does not need to be commutative. All possible values for characteristics of unitary ${\mid}S_R{\mid}$-reduced rings and ${\mid}S_R{\mid}$-domains are also determined.