• 제목/요약/키워드: Pretension force

검색결과 45건 처리시간 0.018초

CAD를 이용한 텐세그리티 구조물의 평형응력모드 결정법 (Equilibrium Stress Mode Determination of Tensegrity Structure by CAD)

  • 김재열
    • 한국공간구조학회논문집
    • /
    • 제12권2호
    • /
    • pp.81-88
    • /
    • 2012
  • 텐세그리티 구조시스템의 한 종류인 케이블 돔 시스템은 케이블과 마스트로 이루어져 있다. 이 케이블에 외부하중이 가해지지 않은 상태에서 안정된 구조물이 되기 위하여 일정의 프리텐션이 가해져야 하며 구조물은 가해진 프리텐션 하에서 자기평형응력상태에 있어야 한다. 본 연구에서는 부재의 내력 벡터의 합 원리를 기초하여 자기평형 응력모드를 구하는 새로운 방법을 제안하였으며, 자기평형응력을 유지하기 위해 필요한 응력모드를 시각화할 수 있다는 점이 기존의 논문과 비교하여 독특성을 갖는다. 본 연구에서 제안된 방법에서 사용된 기본 원리는 모든 절점에서 외부하중이 가해지지 않은 상태에서 내력벡터의 합은 0이 되어야 한다는 것이다. 제안된 방법은 CAD를 이용하여 간단히 자기 평형응력모드를 찾을 수 있으며, 예제 케이블 돔 구조물을 대상으로 각 절점에 연결된 부재들의 내력을 결정하였다. 결과 값은 역학적 계산 방법과 기존의 이론에 의해 검증하였으며 잘 일치하였다.

A Study on the Contact Characteristics of Metal Ring Joint Gaskets

  • 이민영;김병탁
    • 한국태양에너지학회 논문집
    • /
    • 제36권3호
    • /
    • pp.25-31
    • /
    • 2016
  • Gaskets are usually used for the sealing of flange joints. The joint is usually composed of two flanges, a ring gasket and clamping bolts. The metal ring gasket is suitable for pipe flanges, pumps and valve joints in high temperature and high pressure environments. A very high surface stress is developed between a ring type joint gasket and the flange groove when the ring type joint is bolted up in a flange. The dimensions of flanges and ring joint gaskets for the pipe sizes that are in common use are specified in the ANSI codes. However, sometimes it is necessary to make a new design for the flange joint which is not specified in the codes, as the equipment is getting larger and larger in size. This paper presents the contact behavior of Class 600 ring joint gaskets with oval and octagonal cross sections. Five different sizes of gaskets are employed in the analysis, and one of them is newly designed on the basis of analysis results obtained from existing models. Three load steps are used to find the stress, stain and contact pressure etc., and to compare the contact characteristics among the models due to the bolt clamping force and the working surface pressure. ANSYS Workbench version15 is used to conduct the finite element analysis.

임플란트용 실링 어버트먼트의 개발 및 구조해석을 통한 성능분석 (Development of a Sealing-Type Abutment for Implant and the Performance Evaluation via Structural Analysis)

  • 김정민;홍대선
    • 한국정밀공학회지
    • /
    • 제33권9호
    • /
    • pp.769-775
    • /
    • 2016
  • Currently, dental implants are widely used as artificial teeth due to their good chewing performance and long life cycle. Generally, a dental implant consists of an abutment as the upper part and a fixture as the lower part. When chewing forces are repeatedly applied to a dental implant, a gap is often generated at the interfacial surface between the abutment and the fixture, and it results in some deterioration such as loosening of the fastening screw, dental retraction and fixture fracture. To enhance the sealing performance for coping with such problems, this study proposes a new sealing-type abutment having a number of grooves along the conical surface circumference, and it carries out finite element analysis in consideration of the external chewing force and pretension between the abutment and the fixture. The result shows that the proposed sealing-type abutment shows an enhanced sealing performance in terms of the contact pressure in comparison with a conventional abutment.

Wind-induced random vibration of saddle membrane structures: Theoretical and experimental study

  • Rongjie Pan;Changjiang Liu;Dong Li;Yuanjun Sun;Weibin Huang;Ziye Chen
    • Wind and Structures
    • /
    • 제36권2호
    • /
    • pp.133-147
    • /
    • 2023
  • The random vibration of saddle membrane structures under wind load is studied theoretically and experimentally. First, the nonlinear random vibration differential equations of saddle membrane structures under wind loads are established based on von Karman's large deflection theory, thin shell theory and potential flow theory. The probabilistic density function (PDF) and its corresponding statistical parameters of the displacement response of membrane structure are obtained by using the diffusion process theory and the Fokker Planck Kolmogorov equation method (FPK) to solve the equation. Furthermore, a wind tunnel test is carried out to obtain the displacement time history data of the test model under wind load, and the statistical characteristics of the displacement time history of the prototype model are obtained by similarity theory and probability statistics method. Finally, the rationality of the theoretical model is verified by comparing the experimental model with the theoretical model. The results show that the theoretical model agrees with the experimental model, and the random vibration response can be effectively reduced by increasing the initial pretension force and the rise-span ratio within a certain range. The research methods can provide a theoretical reference for the random vibration of the membrane structure, and also be the foundation of structural reliability of membrane structure based on wind-induced response.

국내 CFRP 긴장재의 전달길이에 관한 실험적 연구 (An Experimental Study on Transfer Length of Domestic CFRP Tendon)

  • 정우태;박영환
    • 콘크리트학회논문집
    • /
    • 제21권3호
    • /
    • pp.303-310
    • /
    • 2009
  • CFRP (carbon fiber reinforced polymer) 긴장재는 PC 강연선의 부식문제를 해결하기 위해 대안으로 사용될 수 있다. CFRP 긴장재를 콘크리트구조물에 적용하기 위해서는 부착강도, 전달길이, 정착길이와 같은 재료적 특성이 명확히 결정되어야 한다. 특히 프리텐션 콘크리트 부재에 CFRP 긴장재가 적용될 경우 전달길이는 긴장력 도입에 있어서 중요한 요소가 된다. 본 연구에서 개발된 CFRP 전달길이 및 정착길이를 산정하기 위해 프리텐션 보 9개를 제작하였다. 전달길이 실험결과, 긴장력 25%인 경우는 34D, 긴장력 50%인 경우는 55D로 측정되었고, 긴장력이 커지면 전달길이가 증가하는 것으로 나타났다. 시간경과에 따른 전달길이 변화를 살펴보면, 긴장력의 크기에 따라 시간경과가 전달길이에 영향을 주는 것으로 나타났다. 보강재 특성계수 산정 결과, 본 연구에서 개발된 CFRP 긴장재의 보강재-특성 계수 ${\alpha}_t$는 2.3으로 PS강연선 (${\alpha}_t=2.4$)과 비슷한 것으로 나타났다.

현장 계측을 통한 프리텐션 쏘일네일링 시스템의 적용성 평가 (Assessment of Applicability of Pretentioned Soil-Nail Systems with in-situ monitoring)

  • 이혁진;안광국;김홍택;방윤경
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 지반공학 공동 학술발표회
    • /
    • pp.320-329
    • /
    • 2005
  • The use of diverse methods for the retaining system has been continuously increased in order to maintain the stability during excavation. However, ground anchor system occasionally may have the restriction in urban excavation sites nearby the existing structures because of space limitation. In this case, soil nailing system with relatively short length of nails could be efficiently useful as an alternative method. The general soil nailing support system, however, may result in excessive deformations particularly in excavating the zone of weak soils or nearby the existing structures. Therefore, applying the pretension force to the soil nails then could play important roles to reduce deformations mainly in an upper part of the nailed-soil excavation system as well as to improve the local slope stability. In this study, a newly modified soil nailing technology named as the PSN(Pretention Soil Nailing) is developed to reduce both facing displacements and ground surface settlements during top-down excavation process as well as to increase the global slope stability. Up to now, the PSN system has been investigated mainly focusing on an establishment of the design procedure. In the present study, the field tests including pull-out tests were fulfilled to investigate the behavior of characteristics for PSN system. All results of tests were also analyzed to provide a fundamental and efficient design.

  • PDF

프리텐션 쏘일네일링 시스템의 안정해석 및 적용성 평가 (Stability Analysis and Application Evaluation of the Pretensioned Soil Nailing Systems)

  • 김홍택;박시삼
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2004년도 춘계학술발표회
    • /
    • pp.783-790
    • /
    • 2004
  • In this study, a newly modified soil nailing technology named as the PSN(pretensioned soil nailing) system, is developed to reduce both facing displacements and ground surface settlements in top-down excavation process as well as to increase the global stability. Up to now, the PSN system has been investigated mainly focusing on an establishment of the design procedure. In the present study, the analytical procedure and design technique are proposed to evaluate maximum pretension force and stability of the PSN system. Also proposed arc techniques to determine the required thickness of a shotcrete facing and to estimate probability of a failure against the punching shear. Based on the proposed procedure and technique, effects of the radius of a influence circle and dilatancy angle on the thickness of a shotcrete facing, bonded length and safety factors arc analyzed. In addition, effects of the reduction of deformations expected by pretensioning of the soil nails are examined in detail throughout an illustrative example and $FLAC^{2D}$ program analysis. And a numerical approach is further made to determine a postulated failure surface as well as a minimum safety factor of the proposed PSN system using the shear strength reduction technique with the $FLAC^{2D}$ program. Global minimum safety factors and local safety factors at various excavation stages computed in case of the PSN system arc analyzed throughout comparisons with the results expected in case of the general soil nailing system. The efficiency of the PSN system is also dealt with by analyzing the wall-facing deformations and the adjacent ground surface settlements.

  • PDF

다절점 케이블요소를 이용한 외부 긴장된 강구조 시스템의 기하학적 비선형해석 (Geometric nonlinear analysis of steel structures with external pretension using the multi-noded cable element)

  • 이준석;김문영;한만엽;김성보;김낙경
    • 한국강구조학회 논문집
    • /
    • 제18권6호
    • /
    • pp.727-735
    • /
    • 2006
  • 본 논문에서는 선행논문(김 등, 2005)을 확장하여 다절점 케이블요소를 포함하는 보-기둥 요소의 기하학적 비선형성에 대해서 논의하기로 한다. 먼저 이를 위해서Hermitial 다항식을 형상함수로 채택하고 보-기둥요소의 2차 효과를 포함하는 접선강도행렬에 다절점 케이블-트러스 요소에 대한 접선강도 행렬을 추가하여 전체좌표계에 대한 접선강도행렬을 구성하고 하중증분법에 의한 유한요소 해석과정을 제시한다. 이렇게 새로이 개발된 다절점 케이블-트러스 요소를 포함하는 뼈대 구조물의 기하학적 비선형성과 그 타당성을 검증하기 위하여 IPS(Innovative Prestressed Support) 시스템의 기하학적 비선형 해석을 실시하고 이의 결과를 선형탄성해석의 결과와 비교한다.

Behaviour and design of guyed pre-stressed concrete poles under downbursts

  • Ibrahim, Ahmed M.;El Damatty, Ashraf A.
    • Wind and Structures
    • /
    • 제29권5호
    • /
    • pp.339-359
    • /
    • 2019
  • Pre-stressed concrete poles are among the supporting systems used to support transmission lines. It is essential to protect transmission line systems from harsh environmental attacks such as downburst wind events. Typically, these poles are designed to resist synoptic wind loading as current codes do not address high wind events in the form of downbursts. In the current study, the behavior of guyed pre-stressed concrete Transmission lines is studied under downburst loads. To the best of the authors' knowledge, this study is the first investigation to assess the behaviour of guyed pre-stressed concrete poles under downburst events. Due to the localized nature of those events, identifying the critical locations and parameters leading to peak forces on the poles is a challenging task. To overcome this challenge, an in-house built numerical model is developed incorporating the following: (1) a three-dimensional downburst wind field previously developed and validated using computational fluid dynamics simulations; (2) a computationally efficient analytical technique previously developed and validated to predict the non-linear behaviour of the conductors including the effects of the pretension force, sagging, insulator's stiffness and the non-uniform distribution of wind loads, and (3) a non-linear finite element model utilized to simulate the structural behaviour of the guyed pre-stressed concrete pole considering material nonlinearity. A parametric study is conducted by varying the downbursts locations relative to the guyed pole while considering three different span values. The results of this parametric study are utilized to identify critical downburst configurations leading to peak straining actions on the pole and the guys. This is followed by comparing the obtained critical load cases to new load cases proposed to ASCE-74 loading committee. A non-linear failure analysis is then conducted for the three considered guyed pre-stressed concrete transmission line systems to determine the downburst jet velocity at which the pole systems fail.

유전자알고리즘을 이용한 임플란트용 실링어버트먼트의 홈 깊이 최적화에 관한 연구 (Optimization of the Groove Depth of a Sealing-type Abutment for Implant Using a Genetic Algorithm)

  • 이현열;홍대선
    • 한국기계가공학회지
    • /
    • 제17권6호
    • /
    • pp.24-30
    • /
    • 2018
  • Dental implants are currently widely used as artificial teeth due to their good chewing performance and long life cycle. A dental implant consists of an abutment as the upper part and a fixture as the lower part. When chewing forces are repeatedly applied to a dental implant, gap at the interface surface between the abutment and the fixture is often occurred, and results in some deteriorations such as loosening of fastening screw, dental retraction and fixture fracture. To cope with such problems, a sealing-type abutment having a number of grooves along the conical-surface circumference was previously developed, and shows better sealing performance than the conventional one. This study carries out optimization of the groove shape by genetic algorithm(GA) as well as structural analysis in consideration of external chewing force and pretension between the abutment and the fixture. The overall optimization system consists of two subsystems; the one is the genetic algorithm with MATLAB, and the other is the structural analysis with ANSYS. Two subsystems transmit and receive the relevant data with each other throughout the optimization processes. The optimization result is then compared with that of the conventional one with respect to the contact pressure and the maximum stress. The result shows that the optimized model gives better sealing performance than the conventional sealing abutment.