DOI QR코드

DOI QR Code

Wind-induced random vibration of saddle membrane structures: Theoretical and experimental study

  • Rongjie Pan (School of Civil Engineering, Guangzhou University) ;
  • Changjiang Liu (School of Civil Engineering, Guangzhou University) ;
  • Dong Li (School of Civil Engineering, Fuzhou University) ;
  • Yuanjun Sun (School of Civil Engineering, Guangzhou University) ;
  • Weibin Huang (School of Civil Engineering, Guangzhou University) ;
  • Ziye Chen (School of Civil Engineering, Guangzhou University)
  • Received : 2022.08.08
  • Accepted : 2023.02.08
  • Published : 2023.02.25

Abstract

The random vibration of saddle membrane structures under wind load is studied theoretically and experimentally. First, the nonlinear random vibration differential equations of saddle membrane structures under wind loads are established based on von Karman's large deflection theory, thin shell theory and potential flow theory. The probabilistic density function (PDF) and its corresponding statistical parameters of the displacement response of membrane structure are obtained by using the diffusion process theory and the Fokker Planck Kolmogorov equation method (FPK) to solve the equation. Furthermore, a wind tunnel test is carried out to obtain the displacement time history data of the test model under wind load, and the statistical characteristics of the displacement time history of the prototype model are obtained by similarity theory and probability statistics method. Finally, the rationality of the theoretical model is verified by comparing the experimental model with the theoretical model. The results show that the theoretical model agrees with the experimental model, and the random vibration response can be effectively reduced by increasing the initial pretension force and the rise-span ratio within a certain range. The research methods can provide a theoretical reference for the random vibration of the membrane structure, and also be the foundation of structural reliability of membrane structure based on wind-induced response.

Keywords

Acknowledgement

This work was supported by the National Natural Science Foundation of China (Grant No. 52108121), Guangdong Basic and Applied Basic Research Foundation (Project Number 2019A1515011063), Guangzhou Science and Technology Project (Project number 202102010455), and Science and Technology Project of Guangzhou University (Project number RQ2020100).

References

  1. Bleischwitz, R., de Kat, R. and Ganapathisubramani, B. (2017), "On the fluid-structure interaction of flexible membrane wings for MAVs in and out of ground-effect", J. Fluids Struct., 70, 214-234. https://doi.org/10.1016/j.jfluidstructs.2016.12.001.
  2. CNR-DT 207 R1/2018 (2018), Guide for the Assessment of Wind Actions and Effects on Structures, Roma, Italy, National Research Council of Italy.
  3. Gao, K., Gao, W., Wu, D. and Song, C.M. (2017), "Nonlinear dynamic characteristics and stability of composite orthotropic plate on elastic foundation under thermal environment", Compos. Struct., 168, 619-632. https://doi.org/10.1016/j.compstruct.2017.02.054.
  4. Genc, M.S., Demir, H., Ozden, M. and Bodur, T.M. (2021), "Experimental analysis of fluid-structure interaction in flexible wings at low reynolds number flows", Aircr. Eng. Aerosp. Technol., 93(6), 1060-1075. https://doi.org/10.1108/AEAT-04-2021-0120.
  5. Hu, R.C., Gu, X.D. and Deng, Z.C. (2020), "Stochastic response analysis of multi-degree-of-freedom vibro-impact system undergoing Markovian jump", Nonlinear Dyn., 101(2), 823-834. https://doi.org/10.1007/s11071-020-05823-z.
  6. Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q. and Liu, H.H. (1998), "The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis", Physic. Sci., 454, 903-995. https://doi.org/10.1098/rspa.1998.0193.
  7. Jiang, Z., Li, J. and Spanos, P. (2020), "Cell renormalized FPK equation for stochastic non-linear systems", Probab. Eng. Mech., 60. https://doi.org/10.1016/j.probengmech.2020.103045.
  8. Kandel, A., Sun, X.Y. and Wu, Y. (2021), "Wind-induced responses and equivalent static design method of oval-shaped arch-supported membrane structure", J. Wind Eng. Ind. Aerodyn., 213. https://doi.org/10.1016/j.jweia.2021.104620.
  9. Li, D., Lai, Z.C., Liu, C.J., Guo, J.T., Yang, X.Q. and Guan, M.S. (2021), "Random vibration of pretensioned rectangular membrane structures under heavy rainfall excitation", Thin Wall. Struct., 164. https://doi.org/10.1016/j.tws.2021.107856.
  10. Li, D., Zheng, Z.L., Yang, R. and Zhang, P. (2018), "Analytical Solutions for Stochastic Vibration of Orthotropic Membrane under Random Impact Load", Mater., 11(7), https://doi.org/10.3390/ma11071231.
  11. Liu, C.J., Deng, X.W., Liu, J. and Zheng, Z.L. (2019), "Impact-induced nonlinear damped vibration of fabric membrane structure: Theory, analysis, experiment and parametric study", Compos. Part B-Eng., 159, 389-404. https://doi.org/10.1016/j.compositesb.2018.09.078.
  12. Liu, C.J., Xie, H.B., Deng, X.W., Liu, J., Wang, M.F. and Jiang, S. (2021), "Random vibration of composite saddle membrane structure under the impact loading", Compos. Struct., 269, https://doi.org/10.1016/j.compstruct.2021.114020.
  13. Michalski, A., Kermel, P.D., Haug, E., Lohner, R., Wuchner, R. and Bletzinger, K.U. (2011), "Validation of the computational fluid-structure interaction simulation at real-scale tests of a flexible 29 m umbrella in natural wind flow", J. Wind Eng. Ind. Aerod., 99(4), 400-413. https://doi.org/10.1016/j.jweia.2010.12.010.
  14. Nagai, Y., Okada, A., Kanda, M., Miyasato, N. and Saitoh, M. (2012), "Study on wind response on horn-shaped membrane structure", J. Struct. Construct. Eng., 77(672), 211-219. https://doi.org/10.3130/aijs.77.211.
  15. Nanos, E.M., Yilmazlar, K., Zanotti, A., Croce, A., Bottasso, C.L. and Iop (2020), "Wind tunnel testing of a wind turbine in complex terrain", Conference on Science of Making Torque from Wind (TORQUE), Delft Univ Technol, Wind Energy Inst, ELECTR NETWORK, Sep 28-Oct 02. https://doi.org/10.1088/1742-6596/1618/3/032041, 2020. a.
  16. Rizzo, F., Kopp, G.A. and Giaccu, G.F. (2021), "Investigation of wind-induced dynamics of a cable net roof with aeroelastic wind tunnel tests", Eng. Struct., 229, https://doi.org/10.1016/j.engstruct.2020.111569.
  17. Rizzo, F. and Caracoglia, L. (2021), "Examination of artificial neural networks to predict wind-induced displacements of cable net roofs", Eng. Struct., 245, https://doi.org/10.1016/j.engstruct.2021.112956.
  18. Rizzo, F., Sadhu, A., Abasi, A., Pistol, A., Flaga. L., Venanzi, I. and Ubertini, F. (2023), "Construction and dynamic identification of aeroelastic test models for flexible roofs", Arch. Civ. Mech. Eng., 23(1), 16. https://doi.org/10.1007/s43452-022-00545-y.
  19. Sun, X.Y., Yu, R.T. and Wu, Y. (2019), "Investigation on wind tunnel experiments of ridge-valley tensile membrane structures", Eng. Struct., 187, 280-298. https://doi.org/10.1016/j.engstruct.2019.02.039.
  20. Uematsu, Y., Uchiyama, K. (1986), "Aeroelastic behavior of an hp shaped suspended roof", Proceedings of the IASS Symposium on Membrane Structures and Space Frame, Osaka 241-248.
  21. Wang, J.M. (2001), Study on Wind-Induced Dynamic Response and Wind Tunnel Test of Membrane Structures, Zhejiang University, Zhejiang.
  22. Wang, R., Yasuda, K. and Zhang, Z. (2000), "A generalized analysis technique of the stationary FPK equation in nonlinear systems under Gaussian white noise excitations", Int. J. Eng. Sci., 38(12), 1315-1330. https://doi.org/10.1016/S0020-7225(99)00081-6.
  23. Wu, Y., Chen, Z.Q. and Sun, X.Y. (2015), "Research on the wind-induced aero-elastic response of closed-type saddle-shaped tensioned membrane models", J. Zhejiang Univ. Sci. A., 16(8), 656-668. https://doi.org/10.1631/jzus.A1400340.
  24. Xu, Y.P., Zheng, Z.L., Liu, C.J., Wu, K. and Song, W.J. (2018), "Aerodynamic stability analysis of geometrically nonlinear orthotropic membrane structure with hyperbolic paraboloid in sag direction", Wind Struct., 26(6), 355-367. https://doi.org/10.12989/was.2018.26.6.355.
  25. Xu, J.H., Zhang, Y.Y., Zhang, L.L. Wu, M., Zhou, Y., Lei, K. and Zhang, Q.L. (2020), "Wind-induced response of open type hyperbolic-parabolic membrane structures", Struct. Eng. Mech., 76(2), 269-278. https://doi.org/10.12989/sem.2020.76.2.269.
  26. Yang, Q.S. and Liu, R.X. (2005), "On aerodynamic stability of membrane structures", Int. J. Space Struct., 20(3), 181-188. https://doi.org/10.1260/026635105775213782.
  27. Zou, Y.F., He, X.H., Jing, H.Q., Zhou, S., Niu, H.W. and Chen, Z.Q. (2018), "Characteristics of wind-induced displacement of super-large cooling tower based-on continuous medium model wind tunnel test", J. Wind Eng. Ind. Aerod., 180, 201-212. https://doi.org/10.1016/j.jweia.2018.08.001.