• Title/Summary/Keyword: Pressure-based method

Search Result 2,761, Processing Time 0.033 seconds

Unstructured-grid Pressure-based Method for Analysing Incompressible flows (비정형격자 압력기준 유동해석기법을 이용한 비압축성 유동해석)

  • Kim J.;Kim T. J.;Kim Y. M.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.11a
    • /
    • pp.42-47
    • /
    • 1998
  • The pressure-based methods are very popular in CFD because it requires less computer core memory compared to other coupled or density-based solvers. Currently structured-mesh methodology based on pressure-based algorithm is quite mature to apply to the practical problems. The unstructured mesh method needs much more computer memory than the structured-mesh method. However the pressure-based method utilizing the sequential approach does not require very large memory used for unstructured-mesh density-based solvers. The present study has developed the unstructured grid pressure-based method. Cell-centered finite volume method was selected due to robustness for imposing various boundary conditions and easy implementation of higher-order upwind scheme. The predictive capability of present method has validated against several benchmark problems.

  • PDF

Study on PIV-Based Pressure Estimation Method of Wave Loading under a Fixed Deck

  • Lee, Gang Nam;Duong, Tien Trung;Jung, Kwang Hyo;Suh, Sung Bu;Lee, Jae Yong
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.6
    • /
    • pp.419-427
    • /
    • 2020
  • In this study, a particle image velocimetry (PIV)-based pressure estimation method was investigated, with application to the wave-in-deck loading phenomenon. An experimental study was performed in a two-dimensional wave tank using a fixed deck structure under a focused wave, obtaining local pressures by pressure sensors, global loads by load cells, and instantaneous velocity fields using the PIV measurement technique. The PIV-based pressure estimation method was applied using the Euler equation as the governing equation, and the proper time step for the wave impact pressure was studied using the normalized root-mean-square deviation. The pressure estimation method showed good agreement for the local impact pressure in comparison with the measured pressure by the pressure sensors. However, some differences were observed in the peak pressure due to the limitations of the Euler equation and the sampling rate of the measurement system. Using the estimation method, the pressure fields during wave-in-deck loading were determined in the study, with an analysis of the mechanism of impact and negative pressure occurrence.

A solution method for the pressure-based boundary condition in the computation of two-dimensional incompressible viscous flow (2차원 비압축성 점성유동에 나타나는 압력 경계조건의 해결방안)

  • 이재헌
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.4
    • /
    • pp.926-933
    • /
    • 1988
  • A Numerical method has been introduced to handle a pressure-based boundary condition of the incompressible viscous flow field. This method, based on SIMPLER algorithm, has been applied to analyze the flow characteristics within a two-dimensional duct of two-exit, as an example. From this, it is possible to determine the ratio of flow rate through two exits imposed on different static pressure. In order to check the validity of the present method, calculated velocity at the boundary imposed on pressure condition by the use of present method has been transferred to the velocity boundary condition of the conventional numerical method workable only with the velocity-based boundary condition. It is found that the calculated boundary pressure from conventional method are almost identical to those endowed originally. Present method, therefore will be widely applicable to the practical situations specified by the pressure-based boundary condition rather than the velocity one.

Development of an Automatic Blood Pressure Device based on Korotkoff Sounds

  • Li, Xiong;Im, Jae Joong
    • International journal of advanced smart convergence
    • /
    • v.8 no.2
    • /
    • pp.227-236
    • /
    • 2019
  • In this study, we develop a Korotkoff sound based automatic blood pressure measurement device including sensor, hardware, and analysis algorithm. PVDF-based sensor pattern was developed to function as a vibration sensor to detect of Korotkoff sounds, and the film's output was connected to an impedance-matching circuit. An algorithm for determining starting and ending points of the Korotkoff sounds was established, and clinical data from subjects were acquired and analyzed to find the relationship between the values obtained by the auscultatory method and from the developed device. The results from 86 out of 90 systolic measurements and 84 out of 90 diastolic measurements indicate that the developed device pass the validation criteria of the international protocol. Correlation coefficients for the values obtained by the auscultatory method and from the developed device were 0.982 and 0.980 for systolic and diastolic blood pressure, respectively. Blood pressure measurements based on Korotkoff sound signals obtained by using the developed PVDF film-based sensor module are accurate and highly correlated with measurements obtained by the traditional auscultatory method.

Unconscious Personal Recognition Method using Personal Footprint (발자국 정보를 이용한 무의식적 개인 식별 방법)

  • 정진우;김대진;박광현;변증남
    • Proceedings of the IEEK Conference
    • /
    • 2002.06e
    • /
    • pp.137-140
    • /
    • 2002
  • We introduce a personal identification method which can find user's ID without any help of the user. To do this, there has been two approaches, vision-based and pressure-based. Pressure-based approach has some advantages compared than vision-based one in the aspects of illumination, occlusion, and the amount of data. In the previous study about pressure-based personal identification, there are some restrictions about human body posture for extracting normalized footprints. Since this approach cannot be extended unconscious and continuos identification, we suppose more natural method and verified it by experiments.

  • PDF

The influence of load pulse shape on pressure-impulse diagrams of one-way RC slabs

  • Wang, Wei;Zhang, Duo;Lu, Fangyun
    • Structural Engineering and Mechanics
    • /
    • v.42 no.3
    • /
    • pp.363-381
    • /
    • 2012
  • This study is aimed at providing an efficient analytical model to obtain pressure- impulse diagram of one-way reinforced concrete slabs subjected to different shapes of air blast loading using single degree of freedom method (SDOF). A tri-linear elastic perfectly plastic SDOF model has been used to obtain the pressure-impulse diagram to correlate the blast pressure and the corresponding concrete flexural damage. In order to capture the response history for the slab, a new approximately SDOF method based on the conventional SDOF method is proposed and validated using published test data. The influences of pulse loading shape on the pressure-impulse diagram are studied. Based on the results, a pressure-impulse diagram generation method using SDOF and an analytical equation for the pressure-impulse diagram is proposed to different damage levels and different blast loading shapes.

Deterministic and reliability-based design of necessary support pressures for tunnel faces

  • Li, Bin;Yao, Kai;Li, Hong
    • Geomechanics and Engineering
    • /
    • v.22 no.1
    • /
    • pp.35-48
    • /
    • 2020
  • This paper provides methods for the deterministic and reliability-based design of the support pressures necessary to prevent tunnel face collapse. The deterministic method is developed by extending the use of the unique load multiplier, which is embedded within OptumG2/G3 with the intention of determining the maximum load that can be supported by a system. Both two-dimensional and three-dimensional examples are presented to illustrate the applications. The obtained solutions are validated according to those derived from the existing methods. The reliability-based method is developed by incorporating the Response Surface Method and the advanced first-order second-moment reliability method into the bisection algorithm, which continuously updates the support pressure within previously determined brackets until the difference between the computed reliability index and the user-defined value is less than a specified tolerance. Two-dimensional reliability-based support pressure is compared and validated via Monte Carlo simulations, whereas the three-dimensional solution is compared with the relationship between the support pressure and the resulting reliability index provided in the existing literature. Finally, a parametric study is carried out to investigate the influences of factors on the required support pressure.

Unstructured Pressure Based Method for All Speed Flows (전 속도영역 유동을 위한 비정렬격자 압력기반해법)

  • Choi, Hyung-Il;Lee, Do-Hyung;Maeng, Joo-Sung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.11
    • /
    • pp.1521-1530
    • /
    • 2002
  • This article proposes a pressure based method for predicting flows at all speeds. The compressible SIMPLE algorithm is extended to unstructured grid framework. Convection terms are discretized using second-order scheme with deferred correction approach. Diffusion term discretization is based on structured grid analogy that can be easily adopted to hybrid unstructured grid solver. This method also uses node centered scheme with edge based data structure for memory and computing time efficiency of arbitrary grid types. Both incompressible and compressible benchmark problems are solved using the above methodology. The demonstration of this method is extended to slip flow problem that has low Reynolds number but compressibility effect. It is shown that the proposed method can improve efficiency in memory usage and computing time without losing any accuracy.

Deflection prediction of inflatable flat panels under arbitrary conditions

  • Mohebpour, S.R.
    • Structural Engineering and Mechanics
    • /
    • v.45 no.6
    • /
    • pp.853-865
    • /
    • 2013
  • Inflatable panels made of modern and new textile materials can be inflated at high pressure to have a high mechanical strength. This paper is based on the finite element method as a general solution to determine the characteristics of deformed inflatable panels at high pressure in various end and loading conditions. Proposed method is based on the construction of weak form of formulation and application of Reduced Integration Element method (RIE) to solve the numerical problem of shear locking. The numerical results are validated as an outcome of comparison with other published results.

Reliability Study of Measuring Range of Motion Glenohumeral Joint Internal Rotation With Pressure Biofeedback Stabilization

  • Hwang, Ui-jae;Ha, Sung-min;Jeon, In-chul;Jung, Sung-hoon;Choi, Kyu-hwan;Kim, Su-jung;Kwon, Oh-yun
    • Physical Therapy Korea
    • /
    • v.22 no.4
    • /
    • pp.62-70
    • /
    • 2015
  • The aims of the current study were to assess reliability of range of motion (ROM) measurement of glenohumeral internal rotation (GIR) with a pressure biofeedback stabilization (PBS) method and to compare the reliability between manual stabilization (MS) and the PBS method. In measurement of pure glenohumeral joint motion, scapular stabilization is necessary. The MS method in GIR ROM measurement was used to restrict scapular motion by pressing the palm of the tester's hand over the subject's clavicle, coracoid process, and humeral head. The PBS method was devised to maintain consistent pressure for scapular stabilization during GIR ROM measurement by using a pressure biofeedback unit. GIR ROM was measured by 2 different stabilization methods in 32 subjects with GIR deficit using a smartphone clinometer application. Repeated measurements were performed in two test sessions by two testers to confirm inter- and intra-rater reliability. After tester A performed measurements in test session 1, tester B's measurements were conducted one hour later on the same day to assess the inter-rater reliability and then tester A performed again measurements in test session 2 for confirming the intra-rater reliability. Intra-class correlation coefficient (ICC) (2,1) was applied to assess the inter-rater reliability and ICC (3,1) was applied to determine the intra-rater reliability of the two methods. In the PBS method, the intra-rater reliability was excellent (ICC=.91) and the inter-rater reliability was good (ICC=.84). The inter-rater and intra-rater reliability of the PBS method was higher than in the MS method. The PBS method could regulate manual scapular stabilization pressure in inter- and intra-rater measuring GIR ROM. Results of the current study recommend that the PBS method can provide reliable measurement data on GIR ROM.