DOI QR코드

DOI QR Code

Unstructured Pressure Based Method for All Speed Flows

전 속도영역 유동을 위한 비정렬격자 압력기반해법

  • 최형일 (한양대학교 대학원 기계공학과) ;
  • 이도형 (한양대학교 기계·정보경영학부) ;
  • 맹주성 (한양대학교 기계공학부)
  • Published : 2002.11.01

Abstract

This article proposes a pressure based method for predicting flows at all speeds. The compressible SIMPLE algorithm is extended to unstructured grid framework. Convection terms are discretized using second-order scheme with deferred correction approach. Diffusion term discretization is based on structured grid analogy that can be easily adopted to hybrid unstructured grid solver. This method also uses node centered scheme with edge based data structure for memory and computing time efficiency of arbitrary grid types. Both incompressible and compressible benchmark problems are solved using the above methodology. The demonstration of this method is extended to slip flow problem that has low Reynolds number but compressibility effect. It is shown that the proposed method can improve efficiency in memory usage and computing time without losing any accuracy.

Keywords

References

  1. Jameson, A. and Mavriplis, D. J., 1986. 'Finite Volume Solution of the Two-Dimensional Euler Equations on a Regular Triangular Mesh,' AIAA Journal, Vol. 24, April, pp. 611-618 https://doi.org/10.2514/3.9315
  2. Anderson, W. K., 1994, 'A Grid Generation and Flow Solution Method for the Euler Equations on Unstructured Grids,' J. Comput. Phys., Vol. 110, pp. 23-38 https://doi.org/10.1006/jcph.1994.1003
  3. Venkatakrishnan, V. and Mavriplis, D. J., 1993, 'Implicit Solvers for Unstructured Meshes,' J. Comput. Phys., Vol. 105 https://doi.org/10.1006/jcph.1993.1055
  4. Chorin, A. J., 1967, 'A Numerical Method for Solving Incompressible Viscous Flow Problems,' J. Comput. Phys., Vol. 2, pp. 12-26 https://doi.org/10.1006/jcph.1997.5716
  5. Rogers, S. E., 1989, 'Numerical Solution of the Incompressible Navier-Stokes Equations,' PhD Thesis, Stanford Univ.
  6. Kwak, D. and Chakravarthy, S. R., 1986, 'A Three-Dimensional Imcompressible Navier-Stokes Flow Solver Using Primitive Variables,' AIAA Journal, Vol. 24, pp. 390-396 https://doi.org/10.2514/3.9279
  7. Lee, D., 1996, 'Local Preconditioning of the Euler and Navier-Stokes Equations,' PhD Thesis, Univ. of Michigan
  8. Turkel, E., 1987, 'Preconditioned Methods for Solving the Incompressible and Low Speed Compressible Equations,' J. Comput. Phys., Vol. 72 https://doi.org/10.1016/0021-9991(87)90084-2
  9. Patankar, S. V. and Spalding, D. B., 1972, 'A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-dimensional Parabolic Flows,' Int. J. Heat Mass Transfer, Vol. 15, pp. 1787-1806 https://doi.org/10.1016/0017-9310(72)90054-3
  10. Van Doormal, J. P. and Raithby, G. D., 1984, 'Enhancements of the SIMPLE Method for Predicting Incompressible Fluid Flows,' Numer. Heat Transfer, Vol.7, pp. 147-163 https://doi.org/10.1080/01495728408961817
  11. Issa, R. I., 1986, 'Solution of the Implicitly Discretised Fluid Flow Equations by Operator Splitting,' J. Comput. Phys., Vol. 62, pp. 40-65 https://doi.org/10.1016/0021-9991(86)90099-9
  12. Prakash, C. and Patankar, S. V., 1985, 'A Control Volume-based Finite Element Method for Solving the Navier-Stokes Equations using Equal-order Velocity-Pressure Interpolation,' Numer. Heat Transfer, Part B, Vol. 8, pp. 259-280 https://doi.org/10.1080/01495728508961854
  13. Davidson, L., 1996, 'A Pressure Correction Method for Unstructured Meshes with Arbitrary Control Volumes,' Int. J. Numer. Meth. Fluids, Vol. 22, pp. 265-281 https://doi.org/10.1002/(SICI)1097-0363(19960229)22:4<265::AID-FLD359>3.0.CO;2-J
  14. Karki and Patankar, 1989, 'Pressure Based Calculation Procedure for Viscous Flows at All Speeds in Arbitrary Configurations,' AIAA Journal, Vol. 27, No. 9, pp. 1167-1174 https://doi.org/10.2514/3.10242
  15. Demirdzic, I., Lilek, Z., and Peric, M., 1993, 'A Collocated Finite Volume Method for Predicting Flows at All Speeds,' Int. J. Numer Meth. Fluids, Vol. 16, pp. 1029-1050 https://doi.org/10.1002/fld.1650161202
  16. Rincon, J. and Elder, R., 1997, 'A High-Resolution Pressure-based Method for Compressible Flows,' Comput. Fluids, Vol. 26, No. 3, pp. 217-231 https://doi.org/10.1016/S0045-7930(96)00037-0
  17. Lien, F. S., 2000, 'A pressure-based unstructured grid method for all-speed flows,' Int. J. Numer. Meth. Fluids, Vol. 33, pp. 355-374 https://doi.org/10.1002/1097-0363(20000615)33:3<355::AID-FLD12>3.0.CO;2-X
  18. Ashford, G. A., 1996, 'An Unstructured Grid Generation and Adaptive Solution Technique for High-Reynolds-Number Compressible Flows,' PhD Thesis, Univ. of Michigan
  19. Anderson, W. K., and Bonhaus, D. L., 1994, 'An Implicit Upwind Algorithm for Computing Turbulent Flows on Unstructured Grids,' Computers Fluids, Vol. 23, No. 1, pp. 1-21 https://doi.org/10.1016/0045-7930(94)90023-X
  20. Rhie, C. M. and Chow, W. L., 1983, 'A Numerical Study of the Turbulent Flow Past an Isolated Airfoil with Trailing Edge Separation,' AIAA Journal, Vol. 21, pp. 1525-1532 https://doi.org/10.2514/3.8284
  21. Muzaferija, S.,1994, 'Adaptive Finite Volume Method for Flow Prediction using Unstructured Meshes and Multigrid Approach,' PhD Thesis, Univ. of London
  22. Myong, R. S., 2000, 'Analysis of Rarefied and MEMS Gas Flows Using Thermodynamically Consistent Nonequilibrium Hydrodynamic Models,' KSAS Journal, Vol. 28, No. 4, pp. 35-47
  23. Piekos, E. S. and 0Breuer, K. S., 1996, 'Numerical Modeling of Micromechanical Devices Using the Direct Simulation Monte Carlo Method,' J. of Fluids Engineering, Vol. 118, pp. 464-469 https://doi.org/10.1115/1.2817781
  24. Beskok, A., Karniadakis, G. E., and Trimmer, W., 1996, 'Rarefaction and Compressibility Effects in Gas Microflows,' J. of Fluids Engineering, Vol. 118, pp. 448-456 https://doi.org/10.1115/1.2817779
  25. Arkilic, E. B., 1997, 'Measurement of the Mass Flow and Tangential Momentum Accommodation Coefficient in Silicon Micromachined Channels,' Ph.D. Dissertation, MIT, Cambridge
  26. Choi, H., Lee, D., and Maeng, J., 2002, 'Numerical Analysis of Microchannel Flows Using Langmuir Slip Model,' KSME Journal B. Vol. 26, No. 4, pp. 587-593
  27. Golub, G. H., and Van Loan, C. F., 1996 , Matrix Computations, The Johns Hopkins University Press
  28. Saad, Y., 1996 , Iterative Methods for Sparse Linear Systems, PWS Publishing Company
  29. Ghia, U., Ghia, K. N., and Shin, C. T., 1982, 'High-Re Solutioans for Incompressible Flow Using the Navier-Stokes Equations and a Multigrid method,' J. Comput. Phys., Vol. 48, pp. 387-411 https://doi.org/10.1016/0021-9991(82)90058-4
  30. Hayes, R. E., Nandakumar, K., and Nasr-el-din, H., 1989, 'Steady Laminar Flow in a 90 Degree Planar Branch,' Comput. Fluids, Vol. 17, No. 4, pp. 537-553 https://doi.org/10.1016/0045-7930(89)90027-3
  31. Marcum, D. L. and Weatherill, N. P., 1995, 'Unstructured Grid Generation Using Iterative Point Insertion and Local Reconnection,' AIAA Journal, Vol. 33, No. 9, pp. 1619-1625 https://doi.org/10.2514/3.12701
  32. Maeng, J., Han, S., and Choi, H., 2001, 'Extension of Topological Improvement Procedures for Triangular Meshes,' KSME Journal B, Vol. 25, No. 6, pp. 853-859
  33. Eidelman, S., Colella, P., and Shreeve, R. P., 1984, 'Application of the Godunov method and its second-order extension to cascade flow modelling,' AIAA Journal, Vol. 22, pp. 1609-1615 https://doi.org/10.2514/3.8825