Browse > Article
http://dx.doi.org/10.12989/gae.2020.22.1.035

Deterministic and reliability-based design of necessary support pressures for tunnel faces  

Li, Bin (School of Transportation, Wuhan University of Technology, Hubei Highway Engineering Research Center)
Yao, Kai (School of Qilu Transportation, Shandong University)
Li, Hong (School of Transportation, Wuhan University of Technology, Hubei Highway Engineering Research Center)
Publication Information
Geomechanics and Engineering / v.22, no.1, 2020 , pp. 35-48 More about this Journal
Abstract
This paper provides methods for the deterministic and reliability-based design of the support pressures necessary to prevent tunnel face collapse. The deterministic method is developed by extending the use of the unique load multiplier, which is embedded within OptumG2/G3 with the intention of determining the maximum load that can be supported by a system. Both two-dimensional and three-dimensional examples are presented to illustrate the applications. The obtained solutions are validated according to those derived from the existing methods. The reliability-based method is developed by incorporating the Response Surface Method and the advanced first-order second-moment reliability method into the bisection algorithm, which continuously updates the support pressure within previously determined brackets until the difference between the computed reliability index and the user-defined value is less than a specified tolerance. Two-dimensional reliability-based support pressure is compared and validated via Monte Carlo simulations, whereas the three-dimensional solution is compared with the relationship between the support pressure and the resulting reliability index provided in the existing literature. Finally, a parametric study is carried out to investigate the influences of factors on the required support pressure.
Keywords
tunnel face stability; necessary support pressure; strength reduction analysis; reliability-based design; bisection method;
Citations & Related Records
Times Cited By KSCI : 8  (Citation Analysis)
연도 인용수 순위
1 Mollon, G., Phoon, K.K., Dias, D. and Soubra, A.H. (2010), "Validation of a new 2D failure mechanism for the stability analysis of a pressurized tunnel face in a spatially varying sand", J. Eng. Mech., 137, 8-21. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000196.   DOI
2 Napa-Garcia, G.F., Beck, A.T. and Celestino, T.B. (2017), "Reliability analyses of underground openings with the point estimate method", Tunn. Undergr. Sp. Technol., 64, 154-163. https://doi.org/10.1016/j.tust.2016.12.010.   DOI
3 Oreste, P.P. and Dias, D. (2012), "Stabilisation of the excavation face in shallow tunnels using fibreglass dowels", Rock Mech. Rock Eng., 45(4), 499-517. https://doi.org/10.1007/s00603-012-0234-1.   DOI
4 Pan Q. and Dias D. (2016), "The effect of pore water pressure on tunnel face stability", Int. J. Numer. Anal. Meth. Geomech., 40, 2123-2136. https://doi.org/10.1002/nag.2528.   DOI
5 Pan, Q. and Dias, D. (2017), "Probabilistic evaluation of tunnel face stability in spatially random soils using sparse polynomial chaos expansion with global sensitivity analysis", Acta Geotech. 12, 1415-1429. https://doi.org/10.1007/s11440-017-0541-5.   DOI
6 Pan, Q. and Dias, D. (2018), "Three dimensional face stability of a tunnel in weak rock masses subjected to seepage forces", Tunn. Undergr. Sp. Technol., 71, 555-566. https://doi.org/10.1016/j.tust.2017.11.003.   DOI
7 Panet, M., Givet, P.D.C.O., Guilloux, A., Duc, J.L.D.G.N.M., Piraud, J. and Wong, H.T.S.D.H. (2001), "The convergence- confinement method", AFTESRrecommendations des Groupes de Travait, Press ENPC.
8 Perazzelli, P. and Anagnostou, G. (2017), "Analysis method and design charts for bolt reinforcement of the tunnel face in purely cohesive soils", J. Geotech. Geoenviron. Eng., 143, 04017046. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001702.   DOI
9 Bin, L., Taiyue, Q., Wang, Z. and Longwei, Y. (2012), "Back analysis of grouted rock bolt pullout strength parameters from field tests", Tunn. Undergr. Sp. Technol., 28, 345-349. https://doi.org/10.1016/j.tust.2011.11.004.   DOI
10 Anagnostou, G. and Perazzelli, P. (2013), "The stability of a tunnel face with a free span and a non-uniform support", Geotechnik, 36, 40-50. https://doi.org/10.1002/gete.201200014.   DOI
11 Bobet, A. and Einstein, H.H. (2011), "Tunnel reinforcement with rockbolts", Tunn. Undergr. Sp. Technol., 26, 100-123. https://doi.org/10.1016/j.tust.2010.06.006.   DOI
12 Cui, L., Zheng, J.J., Zhang, R.J. and Lai, H.J. (2015), "A numerical procedure for the fictitious support pressure in the application of the convergence-confinement method for circular tunnel design", Int. J. Rock Mech. Min. Sci., 78, 336-349. https://doi.org/10.1016/j.ijrmms.2015.07.001.   DOI
13 Davis, E.H., Gunn, M.J., Mair, R.J. and Seneviratine, H.N. (1980), "The stability of shallow tunnels and underground openings in cohesive material", Geotechnique, 30(4), 397-416. https://doi.org/10.1680/geot.1980.30.4.397.   DOI
14 Kim, S.H. and Tonon, F. (2010), "Face stability and required support pressure for TBM driven tunnels with ideal face membrane - Drained case", Tunn. Undergr. Sp. Technol., 25, 526-542. https://doi.org/10.1016/j.tust.2010.03.002.   DOI
15 Perazzelli, P. and Anagnostou, G. (2013), "Stress analysis of reinforced tunnel faces and comparison with the limit equilibrium method", Tunn. Undergr. Sp. Technol., 38, 87-98. https://doi.org/10.1016/j.tust.2013.05.008.   DOI
16 Perazzelli, P., Leone, T. and Anagnostou, G. (2014), "Tunnel face stability under seepage flow conditions", Tunn. Undergr. Sp. Technol., 43, 459-469. https://doi.org/10.1016/j.tust.2014.03.001.   DOI
17 Phoon, K.K. (2014), Reliability-Based Design in Geotechnical Engineering: Computations and Applications, CRC Press.
18 Zouain, N., Herskovits, J., Borges, L.A. and Feijoo, R.A. (1993), "An iterative algorithm for limit analysis with nonlinear yield functions", Int. J. Solids Struct., 30(10), 1397-1417. https://doi.org/10.1016/0020-7683(93)90220-2.   DOI
19 Juneja, A., Hegde, A., Lee, F.H. and Yeo, C.H. (2010), "Centrifuge modelling of tunnel face reinforcement using forepoling", Tunn. Undergr. Sp. Technol., 25, 377-381. https://doi.org/10.1016/j.tust.2010.01.013.   DOI
20 Khezri, N., Mohamad, H. and Fatahi, B. (2016), "Stability assessment of tunnel face in a layered soil using upper bound theorem of limit analysis", Geomech. Eng., 11(4), 471-492. http://doi.org/10.12989/gae.2016.11.4.471.   DOI
21 Klar, A. and Klein, B. (2014), "Energy-based volume loss prediction for tunnel face advancement in clays", Geotechnique, 64, 776-786. https://doi.org/10.1680/geot.14.P.024.   DOI
22 Senent, S., Mollon, G. and Jimenez, R. (2013), "Tunnel face stability in heavily fractured rock masses that follow the Hoek-Brown failure criterion", Int. J. Rock Mech. Min. Sci., 60, 440-451. https://doi.org/10.1016/j.ijrmms.2013.01.004.   DOI
23 Pinyol Nuria, M. and Alonso Eduardo, E. (2012), "Design of micropiles for tunnel face reinforcement: Undrained upper bound solution", J. Geotech. Geoenviron. Eng., 138(1), 89-99. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000562.   DOI
24 Qin, C.B., Chian, S.C. and Yang, X.L. (2017), "3D limit analysis of progressive collapse in partly weathered Hoek-Brown rock banks", Int. J. Geomech. 17(7), 04017011. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000885.   DOI
25 Senent, S. and Jimenez, R. (2015), "A tunnel face failure mechanism for layered ground, considering the possibility of partial collapse", Tunn. Undergr. Sp. Technol., 47, 182-192. https://doi.org/10.1016/j.tust.2014.12.014.   DOI
26 Sloan, S.W. (2013), "Geotechnical stability analysis", Geotechnique, 63(7), 531-572. https://doi.org/10.1680/geot.12.RL.001.   DOI
27 Tang, X.W., Liu, W., Albers, B. and Savidis, S. (2014), "Upper bound analysis of tunnel face stability in layered soils", Acta Geotech., 9(4), 661-671. https://doi.org/10.1007/s11440-013-0256-1.   DOI
28 Leca, E. and Dormieux, L. (1990), "Upper and lower bound solutions for the face stability of shallow circular tunnels in frictional material", Geotechnique, 40, 581-606. https://doi.org/10.1680/geot.1990.40.4.581.   DOI
29 Klar, A., Osman, A.S. and Bolton, M. (2007), "2D and 3D upper bound solutions for tunnel excavation using 'elastic' flow fields", Int. J. Numer. Anal. Meth. Geomech., 31(12), 1367-1374. https://doi.org/10.1002/nag.597.   DOI
30 Krabbenhoft, K., Lyamin, A. and Krabbenhoft, J. (2015), Optum Computational Engineering (OptumG2). Computer Software, https://www.optumce.com.
31 Lee, Y.J. (2016), "Determination of tunnel support pressure under the pile tip using upper and lower bounds with a superimposed approach", Geomech. Eng., 11(4), 587-605. https://doi.org/10.12989/gae.2016.11.4.587.   DOI
32 Li, B., Hong, Y., Gao, B., Qi, T.Y., Wang, Z.Z. and Zhou, J.M. (2015), "Numerical parametric study on stability and deformation of tunnel face reinforced with face bolts", Tunn. Undergr. Sp. Technol., 47, 73-80. https://doi.org/10.1016/j.tust.2014.11.008.   DOI
33 Li, T.Z. and Yang, X.L. (2019a), "Face stability analysis of rock tunnels under water table using Hoek-Brown failure criterion", Geomech. Eng., 18(3), 235-245. https://doi.org/10.12989/gae.2019.18.3.235.   DOI
34 Li, T.Z. and Yang, X.L. (2019b), "Probabilistic analysis for face stability of tunnels in Hoek-Brown media", Geomech. Eng., 18(6), 595-603. https://doi.org/10.12989/gae.2019.18.6.595.   DOI
35 Yang, X.L. and Huang, F. (2011), "Collapse mechanism of shallow tunnel based on nonlinear Hoek-Brown failure criterion", Tunn. Undergr. Sp. Technol., 26(6), 686-691. https://doi.org/10.1016/j.tust.2011.05.008.   DOI
36 Ukritchon, B., Yingchaloenkitkhajorn, K. and Keawsawasvong, S. (2017), "Three-dimensional undrained tunnel face stability in clay with a linearly increasing shear strength with depth", Comput. Geotech., 88, 146-151. https://doi.org/10.1016/j.compgeo.2017.03.013.   DOI
37 Liu, H. and Low, B.K. (2018), "Reliability-based design of tunnelling problems and insights for Eurocode 7", Comput. Geotech., 97, 42-51. https://doi.org/10.1016/j.compgeo.2017.12.005.   DOI
38 Liu, W., Zhao, Y., Shi, P., Li, J. and Gan, P. (2017), "Face stability analysis of shield-driven tunnels shallowly buried in dry sand using 1-g large-scale model tests", Acta Geotech., 13(3), 693-705. https://doi.org/10.1007/s11440-017-0607-4.   DOI
39 Xiang, Y. and Song, W. (2017), "Upper-bound limit analysis of shield tunnel stability in undrained clays using complex variable solutions for different ground-loss scenarios", Int. J. Geomech., 17(9), 04017057. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000946   DOI
40 Yang, X., Yang, Z., Pan, Q. and Li, Y. (2014), "Kinematical analysis of highway tunnel collapse using nonlinear failure criterion", J. Central South Univ., 21(1), 381-386. https://doi.org/10.1007/s11771-014-1951-2.   DOI
41 Yao, K., Chen, Q., Xiao, H., Liu, Y. and Lee, F. H. (2020), "Small-strain shear modulus of cement-treated marine clay", J. Mater. Civ. Eng., 32(6), 04020114. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003153.   DOI
42 Yao, K., Pan, Y., Jia, L., Yi, J. T., Hu, J. and Wu, C. (2019), "Strength evaluation of marine clay stabilized by cementitious binder", Mar. Georesour. Geotechnol., 1-14. https://doi.org/10.1080/1064119X.2019.1615583.
43 Yoo, C. (2002), "Finite-element analysis of tunnel face reinforced by longitudinal pipes", Comput. Geotech., 29, 73-94. https://doi.org/10.1016/S0266-352X(01)00020-9.   DOI
44 Yu, S. (2018), "Limit analysis of a shallow subway tunnel with staged construction", Geomech. Eng., 15, 1039-1046. https://doi.org/10.12989/gae.2018.15.5.1039.   DOI
45 Zhang, J., Yang J., Yang F., Zhang X. and Zheng X. (2017), "Upper-bound solution for stability number of elliptical tunnel in cohesionless soils", Int. J. Geomech., 17(1), 06016011. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000689.   DOI
46 Mollon, G., Dias, D. and Soubra, A.H. (2010), "Face stability analysis of circular tunnels driven by a pressurized shield", J. Geotech. Geoenviron. Eng., 136, 215-229. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000194.   DOI
47 Lunardi, P. (2008), Design and Construction of Tunnels: Analysis of Controlled Deformations in Rock and Soils (ADECO-RS), Springer Science & Business Media.
48 Maleki, M.R. and Mahyar, M. (2012), "Effect of nail characteristics on slope stability based on limit equilibrium and numerical methods", Geomech. Geoeng., 7(3), 197-207. https://doi.org/10.1080/17486025.2011.631037.   DOI
49 Mollon, G., Dias, D. and Soubra, A.H. (2009), "Probabilistic analysis and design of circular tunnels against face stability", Int. J. Geomech., 9, 237-249. https://doi.org/10.1061/(ASCE)1532-3641(2009)9:6(237).   DOI
50 Mollon, G., Dias, D. and Soubra, A.H. (2011), "Rotational failure mechanisms for the face stability analysis of tunnels driven by a pressurized shield", Int. J. Numer. Anal. Meth. Geomech., 35(12), 1363-1388. https://doi.org/10.1002/nag.962.   DOI
51 Lu, Q. and Low, B.K. (2011), "Probabilistic analysis of underground rock excavations using response surface method and SORM", Comput. Geotech., 38, 1008-1021. https://doi.org/10.1016/j.compgeo.2011.07.003.   DOI
52 Mollon, G., Dias, D. and Soubra, A.H. (2012), "Continuous velocity fields for collapse and blowout of a pressurized tunnel face in purely cohesive soil", Int. J. Numer. Anal. Meth. Geomech., 37, 2061-2083. https://doi.org/10.1002/nag.2121.   DOI
53 Mollon, G., Dias, D. and Soubra, A.H. (2013), "Probabilistic analyses of tunneling-induced ground movements", Acta Geotech., 8(2), 181-199. https://doi.org/10.1007/s11440-012-0182-7.   DOI
54 Mollon, G., Dias, D. and Soubra, A.H. (2013), "Range of the safe retaining pressures of a pressurized tunnel face by a probabilistic approach", J. Geotech. Geoenviron. Eng., 139, 1954-1967. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000911.   DOI