• Title/Summary/Keyword: Pressure tube

Search Result 2,133, Processing Time 0.027 seconds

Experimental Study on Heat Transfer Performance of CO2 in a Multi-Tube Type Gas Cooler of Inner Diameter Tube of 1.77 mm (내경 1.77 mm의 다중관식 가스냉각기내 CO2 전열 성능에 대한 실험적 연구)

  • Son, Chang-Hyo
    • Journal of Hydrogen and New Energy
    • /
    • v.19 no.5
    • /
    • pp.439-444
    • /
    • 2008
  • The heat capacity and pressure drop of $CO_2$ and coolant in a multi-tube type gas cooler were investigated experimentally. The main components of the refrigerant loop are a receiver, a $CO_2$ compressor, a mass flow meter, an evaporator and a multi-tube type gas cooler as a test section. The mass flowrate of $CO_2$ and coolant were varied from 0.06 to 0.075 [kg/s], respectively and the cooling pressure of gas cooler were from 8 to 10 [MPa]. The heat capacity of $CO_2$ in the test section is increased with the increment in mass flowrate of coolant, the cooling pressure and mass flowrate of $CO_2$. The pressure drop of $CO_2$ is decreased with the decrease in mass flowrate of coolant and $CO_2$, but decreased with increase in cooling pressure of $CO_2$. The heat capacity of $CO_2$ per unit heat transfer area of gas cooler is greatly high. Therefore, in case of the application of $CO_2$ at the multi-tube type gas cooler, it is expected to carry out the high-efficiency, high-performance and compactness of gas cooler.

Characterization of flow properties of pharmaceutical pellets in draft tube conical spout-fluid beds

  • Foroughi-Dahr, Mohammad;Sotudeh-Gharebagh, Rahmat;Mostoufi, Navid
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.274-281
    • /
    • 2018
  • Experimental studies of the hydrodynamic performance of the draft tube conical spout-fluid bed (DCSF) were conducted using pharmaceutical pellets. The experiments were carried out in a DCSF consisted of two sections: (a) a conical section with the cross section of $120mm{\times}250mm$ and the height of 270 mm, (b) a cylindrical section with the diameter of 250 mm and the height of 600 mm. The flow characteristics of solids were investigated with a high speed camera and a pezoresistive absolute pressure transducer simultaneously. These characteristics revealed different flow regimes in the DCSF: packed bed at low gas velocities, fluidized bed in draft tube at higher gas velocities until minimum spouting, and spouted bed. The stable spouting was identified by the presence of two dominant frequencies of the power spectrum density of pressure fluctuation signature: (i) the frequency band 6-9 Hz and (ii) the frequency band 12-15 Hz. The pressure drops across the draft tube as well as the annulus measured in order to better recognize the flow structure in the DCSF. It was observed that the pressure drop across the draft tube, the pressure drop across the annulus, and the minimum spouting velocity increase with the increase in the height of draft tube and distance of the entrainment zone, but with the decrease in the distributor hole pitch. Finally, this study provided novel insight into the hydrodynamic of DCSF, particularly minimum spouting and stable spouting in the DCSF which contains valuable information for process design and scale-up of spouted bed equipment.

Non-Destructive Detection of Hydride Blister in PHWR Pressure Tube Using an Ultrasonic Velocity Ratio Method

  • Cheong Yong-Moo;Lee Dong-Hoon;Kim Sang-Jae;Kim Young-Suk
    • Nuclear Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.369-377
    • /
    • 2003
  • Since Zr-2.5Nb pressure tubes have a high risk for the formation of blisters during their operation in pressurized heavy water reactors, there has been a strong incentive to develop a method for the non-destructive detection of blisters grown on the tube surfaces. However, because there is little mismatch in acoustic impedance between the hydride blisters and zirconium matrix, it is not easy to distinguish the boundary between the blister and zirconium matrix with conventional ultrasonic methods. This study has focused on the development of a special ultrasonic method, so called ultrasonic velocity ratio method for a reliable detection of blisters formed on Zr-2.5Nb pressure tubes. Hydride blisters were grown on the outer surface of the Zr-2.5Nb pressure tube using a cold finger attached to a steady state thermal diffusion equipment. To maximize a difference in the ultrasonic velocity in hydride blisters and the zirconium matrix, the ultrasonic velocity ratio of longitudinal wave to shear wave, $V_L/V_S$, has been determined based on the flight time of the longitudinal echo and reflected shear echo from the outer surface of the tubes. The feasibility of the ultrasonic velocity ratio method is confirmed by comparing the contour plots reproduced by this method with those of the blisters grown on the Zr-2.5Nb pressure tubes.

Evaporation pressure drop of $CO_2$ in a horizontal tube (수평관내 이산화탄소의 증발 압력강하)

  • Lee Dong-Geon;Son Chang-Hyo;Oh Hoo-Kyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.5
    • /
    • pp.552-559
    • /
    • 2005
  • The evaporation pressure drop of $CO_2$ (R-744) in a horizontal tube was investigated experimentally. The experiments were conducted without oil in a closed refrigerant loop which was driven by a magnetic gear pump. The main components of the refrigerant loop are a receiver, a variable-speed pump. a mass flow meter, a pre-heater and evaporator (test section). The test section consists of a smooth. horizontal stainless steel tube of 7.75 mm inner diameter. The experiments were conducted at mass flux of 200 to $500\;kg/m^{2}s$, saturation temperature of $-5^{\circ}C\;to\;5^{\circ}C$. and heat flux of 10 to $40\;kW/m^2$. The test results showed the evaporation pressure drop of $CO_2$ are highly dependent on the vapor qualify, heat flux and saturation temperature. The evaporation pressure drop of $CO_2$ is very lower than that of R-22. In comparison with test results and existing correlations. the best fit of the present experimental data is obtained with the correlation of Choi et al. But existing correlations failed to predict the evaporation pressure drop of $CO_2$. Therefore, it is necessary to develop reliable and accurate predictions determining the evaporation pressure drop of $CO_2$ in a horizontal tube.

Development of Integrity Evaluation System for CANDU Pressure Tube (CANDU 압력관에 대한 건전성 평가 시스템 개발)

  • Kwak, Sang-Log;Lee, Joon-Seong;Kim, Young-Jin;Park, Youn-Won
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.843-848
    • /
    • 2000
  • The pressure tube is a major component of the CANDU reactor, which supports nuclear fuel bundle and it's containment vessel. If a flaw is found during the periodic inspection from the pressure tubes, the integrity evaluation must be carried out, and the safety requirements must be satisfied for continued service. In order to complete the integrity evaluation, complicated and iterative calculation procedures are required. Besides, a lot of data and knowledge for the evaluation are required for the entire integrity evaluation process. For this reason, an integrity evaluation system, which provides efficient way of evaluation with the help of attached databases, was developed. The developed system was built on the basis of ASME Sec. XI and FFSG(Fitness For Service Guidelines for zirconium alloy pressure tubes in operating CANDU reactors) issued by the AECL, and covers the delayed hydride cracking(DHC). Various analysis methods are provided for the integrity evaluation of pressure tube. In order to verify the developed system, several case studies have been performed and the results were compared with those from AECL. A good agreement was observed between those two results.

  • PDF

Performance and Hydraulic Characteristics of Drip Emitters (점적 emitter 의 성능과 수리적 특성)

  • 이남호
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.3
    • /
    • pp.33-40
    • /
    • 1999
  • Variations in the discharge rates of drip emittes were examined to find the effects of operation pressure and the tube length and to evaluate performance of the emitters. Several point-source emitters were selected such as pressure compensated, anti-leak pressure compensated, turbulent flow regulated, flow regulated, ready-made dripper, and spaghetti. Combination of operation pressure and tube length were compared. The microirrigatioon system was operated at pressures of 0.5 , 1.0 , 1.5 and 2.0 bar. The discharge from emitters wer collected at every ten meters along the lateral tube and weighted. In order to evaluate the drip emitters performance coeffcient of discharge variation , statistical uniformity, and emission uniformity were calculated. No significant variation in discharge along drip tube resulted with all emitters. There is no trend of variatiiono of discharge rate from pressure compensated emitters with increase in operation pressures. But discharge rate from other types of emitters increased with increase in operation pressures. The nominal discharge of each emitter was secured at pressure of 1.0 bar, Evaluation using statiscal and emission uniformity coefficients indicated that most of the emitters excepts tubulent flow regulated emitter and ready-made dripper performed at excellent level.

  • PDF

Finite Element Analysis of Hydrogen Concentration for Blister Growth Estimation of CANDU Pressure Tube (CANDU 압력관의 블리스터 성장 예측을 위한 유한요소 수소 확산 해석)

  • Huh, Nam-Su;Kim, Yun-Jae;Kim, Young-Jin;Kim, Young-Seok;Cheong, Yong-Moo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.2
    • /
    • pp.189-195
    • /
    • 2004
  • The pressure tubes, which contain high temperature heavy water and fuel, are within the core of a CANDU nuclear reactor, and are thus subjected to high stresses, temperature gradient, and neutron flux. Further, it is well known that pressure tubes of cold-worked Zr-2.5Nb materials result in hydrogen diffusion, which create fully-hydrided regions (frequently called Blister). Thus a proper investigation of hydrogen diffusion within zirconium-alloy nuclear components, such as CANDU pressure tube and fuel channels is essential to predict the structural integrity of these components. In this respect, this paper presents numerical investigation of hydrogen diffusion to quantify the hydrogen concentration fur blister growth of CANDU pressure tube. For this purpose, coupled temperature-hydrogen diffusion analyses are performed by means of two-dimensional finite element analysis. Comparison of predicted temperature field and blister with published test data shows good agreement.

Time and distance of tulip-inversion in various shaped tube (다양한 형상의 관내에서 화염전파시 튤립화염으로 전환되는 시간과 거리)

  • Jung, Sang-Hun;Lee, Uen-Do;Kim, Nam-Il;Shin, Hyun-Dong
    • 한국연소학회:학술대회논문집
    • /
    • 2002.06a
    • /
    • pp.140-146
    • /
    • 2002
  • The tulip-inversion of flames in half-open tubes was investigated experimentally. Experiments was carried out in tubes with various shapes. The image of a flame propagation were pictured by HICCD(High speed intensified CCD) and the dynamic pressure of tubes was measured by a piezo pressure sensor. By analyzing the images of the flame propagation, we found the time and the distance for the occurrence of tulip-inversion. Regardless of the shapes of tubes, time of tulip-inversion are similar and inversely proportional to the burning velocity. But distances have different tendency. In a straight tube, the distance of tulip-inversion increases when the burning velocity increases. But in a converging tube, the distance of tulip-inversion decreases when a burning velocity increases. And the distance of tulip-inversion in a converging tube is much smaller than the distance of tulip-inversion in a straight tube. These results are caused by the deceleration of a flame when the diameter of a hole in open-side of a tube is small. The deceleration causes little effect on the time of tulip-inversion.

  • PDF

Flow and Thermal Analyses for the Optimal Specification of Flat Tube at Radiator (라디에이터용 납작관의 최적형상 도출을 위한 열.유동해석)

  • Park, Kyoung-Woo;Pak, Hi-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.8
    • /
    • pp.1046-1055
    • /
    • 2000
  • The flow and thermal phenomena in flat tubes of radiator are analyzed numerically. To predict the characteristics of heat transfer and pressure drop, the flow analysis program for three-dimensional complex geometry is developed, which adopted an non-staggered grid system and Cartesian velocities as dependent variables of the momentum equations. Using the developed program, the effect of tube specifications on the heat transfer characteristics is investigated for various flat tubes. From this study, the following results are obtained; (1) For the same hydraulic diameter($D_h{\doteq}5.2$mm), the Nusselt numbers of three basic modeis(D, J, and H-model) are 8.71, 8.92, and 10.58, respectively, and the pressure drops of D-, J-, and H-model are predicted as $-3.08{\times}10^{-2}\;Pa,\;-3.12{\times}10^{-2}\;Pa,\;and\; -3.98{\times}10^{-2}$ Pa, (2) In case of the same flat tube specification, the fins must be brazed at upper tube surface because the heat is more vividly transferred. Therefore, it is found that the H- model is the most effective tube as a heat exchanger and these results are used as a fundamental data for the design of tube.

An Experimental Study on the Performance Characteristics of the Vortex Tube for Substitution of the Intercooler in a Common-rail Diesel Engine (커먼레일 디젤기관의 인터쿨러 대체용 볼텍스 튜브 장치의 성능특성에 관한 실험 연구)

  • Im, Seok-Yeon;Choi, Doo-Seuk;Ryu, Jeong-In
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.3
    • /
    • pp.172-178
    • /
    • 2008
  • An object of this study is to confirm performance characteristics of the vortex tube apparatus for substitution of the intercooler in a common-rail diesel engine. The turbo pressure, the intake air flow rate and the ${\Delta}T_c$ decrease ratio of the intercooler were measured in a experimental engine. The vortex tube apparatus was made after confirmation of the geometric phenomena in fundamental experiments. To investigate energy separation characteristics of the vortex tube, the measured turbo pressure was applied to the vortex tube inlet and the ${\Delta}T_c$ decrease ratio was compared with one of the intercooler in the cold air mass flow ratio similar to the intake air flow rate of the experimental engine. From the results, we found that the energy separation ratio is increased according to of the inlet pressure and the ${\Delta}T_c$ decrease ratio of the vortex tube apparatus is higher than one of the intercooler at low engine speed and engine load of medium and low.