• Title/Summary/Keyword: Pressure modulation

Search Result 149, Processing Time 0.026 seconds

Investigation of Effect of Shape of Pintle on Drag and Thrust Variation (핀틀 형상에 따른 추력 및 항력 변화 연구)

  • Park, Jong-Ho;Kang, Min-Ho;Kim, Joung-Keun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.3
    • /
    • pp.237-243
    • /
    • 2010
  • In this study, the effect of the shape of a pintle(obstacle) on thrust-modulation performance and drag in a pintle rocket was investigated by a cold flow test and by computational fluid dynamics. Pintle movement caused a monotonic increase in the chamber pressure. Thrust generated by the pressure distribution on the pintle body was linearly changed to the chamber pressure, and this thrust was greater than that generated by the nozzle-wall pressure distribution. Because the shock pattern in the nozzle changes with the shape of the pintle body and pressure ratio, the thrust generated by the nozzle-wall pressure is not directly affected by chamber pressure. The drag due to the pintle(obstacle) can be minimized for a fully linear pintle shape, regardless of chamber pressure.

Verification of Control Algorithm for Removing Oil Contaminant Factor from Proportional Pressure Control Valve (전자식 비례 압력제어밸브 내 오일 오염 입자 제거 제어 알고리즘 검증)

  • Cheon, Su Hwan;Park, Jin Kam;Jang, Kyoung Je;Sim, Sung Bo;Jang, Min Ho;Lee, Jin Woong
    • Journal of Drive and Control
    • /
    • v.18 no.4
    • /
    • pp.1-8
    • /
    • 2021
  • An electro proportional pressure control valve is mainly used to control the clutch of an agricultural tractor's automatic transmission. During transmission, the operating, hydraulic oil is mix with many kinds of contaminants. The contaminants can be trapped between the valve body and spool of the proportional pressure control valve leading to abnormal operating conditions and finally critical damage to the transmission hydraulic system. The present study aimed to verify the valve control algorithm as a basic study of developing control logic that removes contaminants between the spool and the body of the proportional pressure control valve. To develop the algorithm, MATLAB/SIMULINK was used. PWM method was used to control the applied solenoid coil current. The effectiveness of the algorithm was verified by comparing the actual pressure of the normal valve with the actual pressure of the abnormal valve. Based on the present study findings, when the algorithm was applied, the response of the valve pressure according to the current became stable and oil contaminated particles were removed. In the future study, the control algorithm will be optimized for the stability of the proportional pressure reducing valve, and it will be verified in consideration with the driving of the clutch.

Complex envelope of sound field and its application (음장의 복소 포락과 응용)

  • Park, Choon-Su;Kim, Yang-Hann
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.502-505
    • /
    • 2006
  • Acoustic holography allows us to predict spatial pressure distribution on any surface of interest from measured hologram. It is noteworthy that the data size is so huge that it takes long time to calculate pressure field. Moreover the reconstructed pressure field is frequently too complicated to get what we want to know. One possible candidate is complex envelope. Complex envelope in time domain is well known and widely used in various engineering field. We have attempted to extend this method to space domain, so that we can have rather simple spatial pressure picture that provides information we need, for example, where sound sources are. First we start with the simplest case. We examine the complex envelope of a plane wave on both space and wave number domain. Then we extend to monopole case. Holographic reconstructed sound field on the monopole is processed according to what we propose. We demonstrate how this method provides better picture for analyzing the sound field.

  • PDF

Study on Low Frequency Swishing Sound Field by a Singularity in Circular Motion with Large Radius (큰 반경의 원운동을 하는 점 음원에 의한 저주파수 스위싱 음장 분석)

  • Lee, Gwang-Se;Cheong, Cheolung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.7
    • /
    • pp.569-574
    • /
    • 2014
  • In order to investigate low frequency swishing noise of wind turbines, acoustic source model using a singularity in circular motion is introduced to derive analytic solution of Lowson acoustic analogy in time domain. Results in time and frequency domains computed by the solution show apparent modulation of amplitude and frequency. The solution indicates that time histories of acoustic pressure at receiver points varied significantly according to receiver's directional location, even when the retarded time distributions are similar. However, the corresponding time-averaged spectra of sound pressure at the receiver locations where the retarded time distributions are almost same are not significantly different. It can be inferred from these results that the time-averaged sound pressure spectra which cannot take into account the detailed difference in the time-variation of wind turbine noise may not represent the sound quality of wind turbines due to its swishing. Finally, as an introduction of procedure to quantify low frequency swishing noise level, relative variation of overall sound pressure level is obtained using tonal low frequency noise model.

Modulation of Subcellular Ca2+ Signal by Fluid Pressure in Rat Atrial Myocytes

  • Woo Sun-Hee;Morad Martin
    • Biomolecules & Therapeutics
    • /
    • v.14 no.1
    • /
    • pp.19-24
    • /
    • 2006
  • Atrial chambers serve as mechanosensory systems during the haemodynamic or mechanical disturbances, which initiates arrhythmia. Atrial myocytes, lacking t-tubules, have two functionally separate sarcoplasmic reticulums (SRs): those at the periphery close to the surface membrane, and those at the cell interior (center) not associated with the membrane. To explore possible role of fluid pressure (FP) in the regulation of atrial local $Ca^{2+}$ signaling we investigated the effect of FP on subcellular $Ca^{2+}$ signals in isolated rat atrial myocytes using confocal microscopy. FP was applied to whole area of single myocyte with pressurized automatic micro-jet (200-400 $mmH_2O$) positioned close to the cell. Application of FP enhanced spontaneous occurrences of peripheral and central $Ca^{2+}$ sparks with larger effects on the peripheral release sites. Unitary properties of single sparks were not altered by FP. Exposure to higher FP often triggered longitudinal $Ca^{2+}$ wave. These results suggest that fluid pressure may directly alter excitability of atrial myocytes by activating $Ca^{2+}$-dependent ionic conductance in the peripheral membrane and by enhancing spontaneous activation of central myofilaments.

Delayed Operation Characteristics of Power Shuttle According to Hydraulic Oil Temperature in the Hydraulic Circuit of Agricultural Tractor

  • Park, Yoon-Na;Kim, Dae-Cheol;Park, Seung-Je
    • Journal of Biosystems Engineering
    • /
    • v.40 no.2
    • /
    • pp.95-101
    • /
    • 2015
  • Purpose: During the start-up period, the response time of a hydraulic system increases in the winter because of the increased oil viscosity caused by the cold weather. The problems of delayed tractor starting and excessive wear of the clutch disk occur for these reasons. Therefore, this study develops an analysis model using the commercial hydraulic analysis program AMESim to examine the characteristics of delays in power shuttle starting at different oil temperatures. Methods: In the experiment, a tractor was stationary on a flat surface with the engine running at a constant speed of 1,080 rpm. The forward lever was then pressed to activate the power shuttle at three different oil temperatures, and the pressure changes were measured. The pressure on the forward clutch control valve was measured by a pressure gauge installed on the hydraulic line supplied to the transmission from the main valve. An analysis model was also developed and verified with actual tests. Results: The trend of the simulated pressures of the power shuttle is similar to that of the measured pressures, and a constant modulation period was observed in both the simulation and test results. However, the difference found between the simulation and test results was the initial pressure required to overcome the initial force of the clutch spring. Conclusions: This study also examines the characteristics of the delayed startup of the power shuttle at different oil temperatures through simulations.

Metal Drilling using Amplitude Modulated Laser Pulse (AM 변조된 레이저 펄스를 이용한 금속 Drilling)

  • Kim, Ho-Seong
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1210-1212
    • /
    • 1994
  • An amplitude modulation technique for increasing the laser penetration efficiency for metals has been studied. By chopping electro-optically Nd:YAG laser pulse, the threshold energy for reliable hole drilling was decreased significantly and the penetration depth was increased. It was observed that the effect of chopping was optimal at 8-12 kHz with 60% duty cycle. It is believed that this improvement is due to an increase in the vapor recoil pressure and reduced plasma screening.

  • PDF

A Study on Energy Saving Algorithm of Electro-Pneumatic Regulator with Modified PWM Driven Method

  • Kim, Hyoung-Seok;Ahn, Kyoung-Kwan;Lee, Byung-Ryong;Yun, So-Nam
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.9
    • /
    • pp.1339-1345
    • /
    • 2006
  • The development of an accurate and energy saving electro-pneumatic regulator that may be applied to a variety of practical pressure control applications is described in this paper. A novel modified pulse width modulation (MPWM) valve pulsing algorithm allows the electro-pneumatic regulator to become energy saving system. A comparison between the system response of conventional PWM algorithm and that of the modified PWM (MPWM) algorithm shows that the control performance is almost the same, but energy saving is greatly improved by adopting this new MPWM algorithm. The effectiveness of the proposed control algorithm is demonstrated through experiments with various reference trajectories.

the Shifting Control in Automatic Transmission by Independent-Acting Clutches (클러치의 독립구동에 의한 자동변속기의 변속제어)

  • 김정관;한명철;홍금식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.4
    • /
    • pp.68-84
    • /
    • 2000
  • A study to reduce the transient torque in shifting in automatic transmission has been very important issue. Recently it is really dominant to decrease the torque by using independent-acting hydraulic circuit because we can control the clutch pressure actively and elaborately. So we design the new hydraulic circuit to control the clutches in automatic transmission and make the module library of computer simulations, We apply the results to GM model automatic transmission and carry out 1longrightarrow4 shifting simulations. By this work we recognize the capability of active and elaborate clutch pressure control using new hydraulic circuit. In addition We develop the tool to simulate the powertrain system. It is easier to update and exchange the subsystem model or parameters than conventional simulation tools.

  • PDF

Effect of oxygen on the threshold voltage of a-IGZO TFT

  • Chong, Eu-Gene;Chun, Yoon-Soo;Kim, Seung-Han;Lee, Sang-Yeol
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.4
    • /
    • pp.539-542
    • /
    • 2011
  • Thin-film transistors (TFTs) are fabricated using an amorphous indium gallium zinc oxide (a-IGZO) channel layer by rf-magnetron sputtering. Oxygen partial pressure significantly changed the transfer characteristics of a-IGZO TFTs. Measurements performed on a-IGZO TFT show the change of threshold voltage in the transistor channel layer and electrical properties with varying $O_2$ ratios. The device performance is significantly affected by adjusting the $O_2$ ratio. This ratio is closely related with the modulation generation by reducing the localized trapping carriers and defect centers at the interface or in the channel layer.