1 |
Niggli, E. and Lederer, W. J. (1990). Voltage-independent calcium release in heart muscle. Science 250, 565-568
DOI
|
2 |
Shinozaki, T., Ishide, N., Miura, M. and Takishima, T. (1993). The source of epifluorescence in isolated perfused heart loaded with fura 2-AM or Indo-1 AM. Heart Vessels 8, 79-84
DOI
|
3 |
Sommer, J. R. and Jennings, R. B. (1992). Ultrastructure of cardiac muscle. In The Heart and Cardiovascular System (Fozzard HA, Harbor E, Jennings RB, Katz AM, Morgan HE, Ed.), pp. 3-50. Ravan Press, New York, NY
|
4 |
Tavi, P., Han, C. and Weckstrom, M. (1998). Mechanisms of stretch-induced changes in [] in rat atrial myocytes. Role of increased troponin C affinity and stretch-activated ion channels. Circ. Res. 83, 1165-1177
DOI
ScienceOn
|
5 |
Vila Petroff, M. G., Kim, S. H., Pepe, S., Dessy, C., Marban, E., Balligand, J. L. and Sollott, S. J. (2001). Endogenous nitric oxide mechanisms mediate the stretch dependence of release in cardiomyocytes. Nature Cell Biol. 3, 867-873
DOI
ScienceOn
|
6 |
Woo, S. H., Cleemann, L. and Morad, M. (2002). currentgated focal and local release in rat atrial myocytes: evidence from rapid 2-D confocal imaging. J. Physiol. 543, 439-453
DOI
|
7 |
Woo, S. H., Cleemann, L. and Morad, M. (2003). Spatiotemporal characteristics of junctional and nonjunctional focal release in rat atrial myocytes. Circ. Res. 92, e1-e11
DOI
|
8 |
Berlin, J. R. (1995). Spatiotemporal changes of during electrically evoked contractions in atrial and ventricular cells. Am. J. Physiol. 267, H1165-H1170
|
9 |
Copper, G., Kent, R. L., Uboh, C. E., Thompson, E. W. and Marino, T. A. (1985). Hemodynamic versus adrenergic control of cat right ventricular hypertrophy. J. Clin. Invest. 75, 1403-1414
DOI
|
10 |
Kirk, M. M., Izu, L. T., Chen-Izu, Y., McCulle, S. L., Wier, W. G., Balke, C. W. and Shorofsky, S. R. (2003). Role of the transverse- axial tubule system in generating calcium sparks and calcium transients in rat atrial myocytes. J. Physiol. 547, 441-451
DOI
ScienceOn
|
11 |
Carl, L. S., Felix, K., Caswell, A. H., Brandt, N. R., Ball, W. J., Vaghy, P. L., Meissner, G. and Ferguson, D.G. (1995). Immunolocalization of sarcolemmal dihydropyridine receptor and sarcoplasmic reticular tridin and ryanodine receptor in rabbit ventricle and atrium. J. Cell. BioI. 129, 673-682
DOI
|
12 |
Kockskamper, J., Sheehan, K. A., Bare, D. J., Lipsius, S. L., Mignery, G. A. and Blatter, L. A. (2001). Activation and propagation of release during excitation-contraction coupling in atrial myocytes. Biophys. J. 81, 2590-2605
DOI
ScienceOn
|
13 |
HUser, J., Blatter, L. A. and Lipsius, S. L. (2000). Intracellular release contributes to automaticity in cat atrial pacemaker cells. J. Physiol. 524, 415-422
DOI
ScienceOn
|
14 |
Bode, F., Sachs, F. and Franz, M. R. (2001). Tarantula peptide inhibits atrial fibrillation. Nature 409, 14-15
|
15 |
Forssmann, W. G. and Girardier, L. (1970). A study of the T system in rat heart. J. Cell. BioI. 44, 1-19
DOI
|
16 |
Morad, M., Javaheri, A, Risius, T. and Belmonte, S. (2005). Multimodality of signaling in rat atrial myocytes. Ann. N. Y. Acad. Sci. 1047, 112-121
DOI
ScienceOn
|
17 |
Nabauer, M., Callewaert, G., Cleemann, L. and Morad, M. (1989). Regulation of calcium release is gated by calcium current, not gating charge, in cardiac myocytes. Science 244, 800-803
DOI
|
18 |
Nazir, S. A. and Lab, M. J. (1996). Mechanoelectric feedback and atrial arrhythmias. Cardiovasc. Res. 31, 52-61
DOI
|
19 |
Woo, S. H., Cleemann, L. and Morad, M. (2005). Diversity of atrial local signaling: evidence from 2-D confocal imaging in buffered rat atrial myocytes. J. Physiol. 567, 905-921
DOI
ScienceOn
|
20 |
Mackenzie, L., Bootman, M. D., Berridge, M. J. and Lipp, P. (2001). Predetermined recruitment of calcium release sites underlies excitation-contraction coupling in rat atrial myocytes. J. Physiol. 530, 417-429
DOI
|
21 |
Lipsius, S. L., Huser, J. and Blatter, L. A. (2001). Intracellular release sparks atrial pacemaker activity. News Physiol. Sci. 16, 101-106
|
22 |
Huser, J., Lipsius, S. L. and Blatter, L. A. (1996). Calcium gradients during excitation-contraction coupling in cat atrial myocytes. J. Physiol. 494, 641-651
DOI
|
23 |
Beuckelmann, D. J., and Wier, W. G. (1988). Mechanism of release of calcium from sarcoplasmic reticulum of guinea-pig cardiac cell. J. Physiol. 405, 233-255
|
24 |
Cleemann, L. and Morad, M. (1991). Role of channel in cardiac excitation-contraction coupling in the rat: evidence from transients and contraction. J. Physiol. 432, 283-312
DOI
|
25 |
Cleemann, L., Wang, W. and Morad, M. (1998). Two-dimensional confocal images of organization, density, and gating of focal release sites in rat cardiac myocytes. Proc. Natz. Acad. Sci. U. S. A. 95, 10984-10989
|
26 |
Kohl, P., Hunter, P and Noble, D. (1999). Stretch-induced changes in heart rate and rhythm: clinical observations, experiments and mathematical models. Prog. Biophys. Mol. BioI. 71, 91-138
DOI
ScienceOn
|
27 |
Komuro, I., Kaida, T., Shibazaki, Y., Kurabayashi, M., Katoh, Y., Hoh, E., Takaku, F. and Yazaki, Y. (1990). Stretching cardiac myocytes stimulates protooncogene expression. J. BioI. Chem. 265, 3595-3598
|
28 |
Lakatta, E. G. (1993). Cardiovascular regulatory mechanisms in advanced age. Physiol. Rev. 73, 413-467
DOI
|
29 |
Mackenzie, L., Bootman, M. D., Laine, M., Berridge, M. J., Thuring, J., Holmes, A., Li, W. H. and Lipp, P. (2002). The role of inositol 1,4,5-trisphosphate receptors in signaling and the generation of arrhythmias in rat atrial myocytes. J. Physiol. 541, 395-409
DOI
ScienceOn
|