• 제목/요약/키워드: Pressure generation part

검색결과 68건 처리시간 0.024초

발파진동이 지반의 안정에 미치는 영향 (The Influence of Ground Stability with Blasting Vibration)

  • 신진환;오세욱
    • 한국안전학회지
    • /
    • 제12권4호
    • /
    • pp.102-107
    • /
    • 1997
  • Ground vibrations are an integral part of the process of rock blasting. The sudden acceleration of the rock by the detonation gas pressure acting on the drillhole walls induces dynamic stresses in the surrounding rock mass. This sets up a wave motion in the ground much like the motion in a bowl of jelly when disturbed by the action of a spoon. The wave motion spreads concentrically from the blasting site, particularly along the ground surface, and is therefore attenuated, since its fixed energy is spread over a greater and greater mass of material as it moves away from its origin. Some theoretical aspects of the generation and propagation of vibrations produced in rock blasting are analyzed; although it must be indicated that this is just a mere approximation to the problem, as the actual phenomena are much more complex owing to the interaction of different types of waves and their modifying mechanics.

  • PDF

국내산 1성분계 실링재의 기초적 특성 분석에 관한 연구 (A Study on the Fundamental Properties of Single-Component Sealant in Domestic Production)

  • 신세준;최윤호;이영준;현승용;한민철;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2019년도 춘계 학술논문 발표대회
    • /
    • pp.188-189
    • /
    • 2019
  • In this study, the characteristics of single-component and other sealant were analyzed to provide repair methods and effective utilization of sealant due to crack generation. Humidity studies have shown that acrylic silicone is effective in many areas of fluidity and temperature change, and that polysulfide-silicon is most effective in resistance to linear expansion coefficient and external pressure. Therefore, the difference between drying shrinkage and thermal expansion coefficient between various building materials and sealant, as well as the use of sealant, is analyzed, and construction methods derived accordingly, and prevention of defects are considered to be part of the construction project.

  • PDF

복합발전 가스터빈 연소기용 저선회 노즐의 연료 분사 위치에 따른 배기배출 및 연소진동 특성 (Emissions and Combustion Dynamics with Fuel Injection Position for Low-swirl Nozzles of Gas Turbine Combustor)

  • 황정재;이원준;김민국;김한석
    • 한국가스학회지
    • /
    • 제26권6호
    • /
    • pp.37-44
    • /
    • 2022
  • 본 연구에서는 SN(Swirl Number)는 같지만 코어부와 스월러부의 질량유량비(m)가 다른 저선회 노즐 2종을 설계하여 상압 연소성능 시험을 수행하였다. 각 노즐에 대해 단열화염온도에 따른 연소성능 실험을 수행하였고 화염구조 특성, NOx 배출 특성, 연소진동 모드를 파악하였다. 화염구조가 크게 차이가 있었지만 CO 배츨 특성은 유사하였고 NOx 배출 특성도 화염구조보다는 연소진동과 더 큰 관련성이 있음을 보였다. 연료노즐의 위치를 변경하여 대류지연시간을 조절하면서 연소진동 및 NOx 배출 특성을 파악하였는데 대류지연시간이 연소진동 주기의 (3+4n)/4±1/4 (n=0,1,2,...) 영역에 들어올 때 진소진동이 강하게 나타나고 반대의 경우는 연소진동이 아주 약하게 발생함을 확인하였다.

격자, 난류모형 및 이산화 방법이 유동해석 결과에 미치는 영향 (Effect of Grid, Turbulence Modeling and Discretization on the Solution of CFD)

  • 박동우;윤현식
    • 해양환경안전학회지
    • /
    • 제20권4호
    • /
    • pp.419-425
    • /
    • 2014
  • 본 연구는 격자수, 첫 번째 격자까지의 거리($Y_P+$), 난류모델 그리고 이산화 방법에 따른 해의 변화량을 조사하였다. 대상선박은 KVLCC이며, 격자구성과 유동해석은 상용코드인 Gridgen V15와 FLUENT를 사용하였다. 검토는 2가지 파트로 나누어서 수행하였다. 첫 번째 파트는 격자수, 난류모델 그리고 이산화 방법의 조합에 따른 해의 영향성을 평가하였다. 두 번째 파트는 적합한 $Y_P+$ 선정에 초점을 두었다. 격자수와 이산화 방법이 동일한 경우 마찰저항은 난류모델에 따라 약 1 % 내에서 차이를 보였으나, 압력저항은 약 9 %의 큰 차이를 보였다. $Y_P+$와 이산화 방법이 동일한 경우 $Y_P+$를 30과 50으로 설정하였을 때 마찰저항은 난류모델에 따라 약 1 % 내에서 차이를 보였으나, 100에서는 약 3 % 차이를 보였다. 반면, 압력저항은 $Y_P+$값에 무관하게 난류모델에 따라 약 10 % 차이를 보였다. 난류모델과 이산화 방법이 동일한 경우 격자 수 변화 따라 마찰저항, 압력저항 그리고 전 저항 모두 큰 차이를 보이지 않았다. 난류모델과 이산화 방법이 동일한 경우 $Y_P+$의 변화에 따라 마찰저항은 5~8 %의 큰 차이를 보였고, 압력저항은 큰 차이를 보이지 않았다.

공기구동 스크롤 팽창기 성능특성에 관한 실험적 연구 (Experimental Study on Performance Characteristics of Air Driven Scroll Expander)

  • 송원빈;곽철우;김태균;김주영;김광호
    • 한국유체기계학회 논문집
    • /
    • 제19권6호
    • /
    • pp.50-54
    • /
    • 2016
  • The performance of a scroll expander is the most important factor for the efficiency of small scale Organic Rankine cycle waste heat power generation systems. In this research, a scroll compressor was purchased and operated in reverse to function as a scroll expander. With air as a working fluid, a series of performance test were conducted on this expander by varying the inlet and outlet pressure. Secondly, We have tested through 2000 to 3500 rpm rotational speed to find the maximum power and efficiency of the expander. And last, It was observed in the initial experiments that the design of the expander's orbiting scroll wrap partially blocked the fluid intake which may have caused unnecessary flow resistance. To verify this theory, a small part of the scroll wrap was removed and the performance test was redone. It was observed that the lower back pressure assure the higher efficiency and power of expander and the rotational speed that shows maximum adiabetic efficiency of scroll expander is 69% at 2500 rpm. And by modified wrap of the scroll, we could get volume flow rate for 13% to 19% and power for 5% to 18% increased. But the maximum efficiency of the modified scroll was decreased 8%.

베어링의 열전도율이 평행 슬라이더 베어링의 윤활성능에 미치는 영향 (Effect of Thermal Conductivity of Bearing on the Lubrication Performance of Parallel Slider Bearing)

  • 박태조;이원석;박지빈
    • Tribology and Lubricants
    • /
    • 제34권6호
    • /
    • pp.247-253
    • /
    • 2018
  • Temperature rise due to viscous shear of the lubricating oil generates hydrodynamic pressure, even if the lubricating surfaces are parallel. This effect, known as the thermal wedge effect, varies significantly with film-temperature boundary conditions. The bearing conducts a part of the heat generated; hence, the oil temperature varies with the thermal conductivity of the bearing. In this study, we analyze the effect of thermal conductivity on the thermohydrodynamic (THD) lubrication of parallel slider bearings. We numerically analyze the continuity equation, Navier-Stokes equation, energy equation including the temperature-viscosity and temperature-density relations for lubricants, and the heat conduction equation for bearing by creating a 2D model of the micro-bearing using the commercial computational fluid dynamics (CFD) code FLUENT. We then compare the variation in temperature, viscosity, and pressure distributions with the thermal conductivity. The results demonstrate that the thermal conductivity has a significant influence on THD lubrication characteristics of parallel slider bearings. The lower the thermal conductivity, the greater the pressure generation due to the thermal wedge effect resulting in a higher load-carrying capacity and smaller frictional force. The present results can function as the basic data for optimum bearing design; however, the applicability requires further studies on various operating conditions.

고압 인젝터의 동적 거동을 고려한 최적 틈새 조합에 관한 연구 (Selection of Optimum Clearance Considering the Dynamic Behavior of a High-pressure Injector)

  • 류대원;김동준;박상신;류봉우
    • Tribology and Lubricants
    • /
    • 제37권5호
    • /
    • pp.172-178
    • /
    • 2021
  • An injector is a mechanical device present inside the engine. Its main function is to supply an appropriate volume of fuel into the combustion chamber, which is directly related to the overall engine efficiency of a car. During the operation of an injector, a magnetic force lifts the parts of the injector from closed position to open position which generates a horizontal force on the needle. The horizontal force acts on a different position from that of the center of mass of the needle. Therefore, this causes eccentricity in the needle and the generation of a tilting motion during the lifting operation which can result in wear. However, appropriate selection of clearances for these parts can prevent wear. In this study, lubrication analysis is conducted to determine the optimum clearance of parts with sliding motion inside the injector. The height functions are derived considering the dynamic behavior and relative velocity of the parts. Using the derived height function, the pressure profiles are calculated for the lubricated surfaces from the Reynolds' equation. Subsequently, the fluid reaction forces are calculated. The equations of motions are applied to the fluid reaction forces and external forces are solved to calculate the minimum film thickness between each part with variation in the clearances. Finally, the optimum clearances are determined. The effect of the clearances on the behavior of the moving parts is presented and discussed.

복심곡선 레일이상마모 발생 저감 사례 (The Reduction Case of Occurrence of Abnormal Wearing of Rail in Compound Curve Part)

  • 김완술
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 춘계학술대회 논문집
    • /
    • pp.1097-1106
    • /
    • 2007
  • Rail provides running tract for train and broadly and widely conveys the weight of the train exerted from the train wheels that the rail directly supports onto the cross tie and roadbed, and supports the cross-sectional pressure exerted by centrifugal force at curvatures. That is, stationary rail provides surface on which dynamic train runs and guarantees cross-sectional resistance to enable the vertical snake motion of the train wheels as well as to maintain lateral force at curvatures. Rail provides running surface on which train wheels can run smoothly, and secures vertical and lateral force. However, it undergoes continuous destructive reactions (wearing and damages) and abrasion of the cladding by the train wheels. It is obvious that wearing will result when two metal parts act against each other. However, occurrence of abnormal wearing such as rapid wearing of the rail side due to complex generation of various mechanisms at the contact surface between the rail and train wheel flange. It is not easy to simply examine the causes of occurrence of abnormal wearing of rail and train wheel flange. Although countless number of academicians and specialists are conducting researches on abnormal wearing of rail and vertical wearing of train wheels, I believe it is too early to argue on pros and cons due to insufficiency of officially verified information on the issue. This review will be focusing on the examples of repairs that reduced the generation of abnormal wearing of rail by reviewing and improving characteristics of wearing and slack, speed of the train and cant as well as status of lubricator by choosing the compound curves present in the section between the $Anguk{\sim}Jongno3-ga$ Stations of the Route No. 3 among the compound curve tracks of the Seoul Metro Routes No. 3 & 4 at which abnormal wearing is generated continuously.

  • PDF

평면형 ECF 펌프를 이용한 전자기기 액체냉각 시스템 (Liquid Cooling System Using Planar ECF Pump for Electronic Devices)

  • 서우석;함영복;박중호;윤소남;양순용
    • 한국정밀공학회지
    • /
    • 제24권12호
    • /
    • pp.95-103
    • /
    • 2007
  • This paper presents a liquid cooling concept for heat rejection of high power electronic devices existing in notebook computers etc. The design, fabrication, and performance of the planar ECF pump and farced-liquid cooling system are summarized. The electro-conjugate fluid (ECF) is a kind of dielectric and functional fluids, which generates jet flows (ECF-jets) by applying static electric field through a pair of rod-like electrodes. The ECF-jet directly acts on the working fluid, so the proposed planar ECF pump needs no moving part, produces no vibration and noise. The planar ECF pump, consists of a pump housing and electrode substrate, achieves maximum flow rate and output pressure of $5.5\;cm^3/s$ and 7.2 kPa, respectively, at an applied voltage of 2.0 kV. The farced-liquid cooling system, constructed with the planar ECF pump, liquid-cooled heat sink and thermal test chip, removes input power up to 80 W keeping the chip surface temperature below $70\;^{\circ}C$. The experimental results demonstrate that the feasibility of forced-liquid cooling system using ECF is confirmed as an advanced cooling solution on the next-generation high power electronic devices.

전력용 콘덴서의 화재메커니즘과 실제 화재상관관계 연구 (The Study Fire Mechanism and Real Fire Correlation of Power Condenser)

  • 백동현
    • 한국화재소방학회논문지
    • /
    • 제31권6호
    • /
    • pp.112-117
    • /
    • 2017
  • 본 논문은 전력용 콘덴서의 화재메커니즘에 대하여 실제 화재사례를 근거로 상관관계를 논한 것이다. 전력용 콘덴서의 고장 메커니즘에서는 7단계, 화재 발생메커니즘은 12단계로 분류되었다. 이 중 5단계인 보호회로의 보호계전기가 동작하는 과정은 고장시와 화재발생시의 메커니즘과 동일하였다. 6단계에서부터 화재 발생메커니즘이 적용되어 전력용 콘덴서 내부의 연소현상 및 아크로 인한 가스발생으로 내부압력이 증가되어 화재 발생메커니즘 10단계에서 폭발하였음을 확인하였다. 11단계인 아크 등의 불꽃이 절연유와 함께 외부로 분출되고 2차 사고인 화재 발생으로 확대되었음을 확인하였으며 이와 같은 단계별 상관관계는 화재조사에 많은 기여를 할 수 있다.