• Title/Summary/Keyword: Pressure Sintering Method

Search Result 139, Processing Time 0.035 seconds

Fabrication and Permeability of Stainless Steel Filter by using Filler Metal (Filler metal을 이용한 Stainless steel필터의 제조 및 통기도)

  • 배승열;안인섭;성택경;최주호
    • Journal of Powder Materials
    • /
    • v.11 no.4
    • /
    • pp.288-293
    • /
    • 2004
  • The application concept of using a fail safety filter on the filtering system is to prevent the particle leakage when the main filter element is broken at high temperature. In this study, the metal filters were fabricated by pressureless sintering method. The mixture of stainless steel powders and filler metal binder solved in the water solutions of 5% PVA was compacted to form the cylindrical filter without pressure. The compacted filter were sintered in the vacuum sintering furnace at 120$0^{\circ}C$ for 1 hour. The metal filter(produced with powder of 640-840 ${\mu}m$ size) having more than above 50% porosity, 500${\mu}m$ pore size, and permeability of 7.3${\times}$10$^{-11}$m$^{2}$ plugged within 2.5 minute to prevent the leakage of maximum slip particle size of less than 3${\mu}m$.

High $T_c$ Superconducting Thick Film for Applications

  • Soh, Deawha;Park, Seongbeom;Wang, Jue;Li, Fenghua;Fan, Zhanguo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05b
    • /
    • pp.12-15
    • /
    • 2003
  • The YBaCuO thick film was deposited by the electrophoresis in the solution with different dimension particles. The morphology of the films deposited from different particles size was compared. The powder made by sol-gel method has the submicron particles, which deposit the most smooth film, and without microcracks after sintering. After sintering of the deposited film, the zone-melting process was carried out in low oxygen partial pressure (100 Pa) and Ag was used as substrate. And the zone-melted YBaCuO was studied by XRD.

  • PDF

Fabrication and Characterization of Porous Nickel Membrane for High Precision Gas Filter by In-situ Reduction/Sintering Process (In-situ 환원/소결법을 이용한 다공성 니켈 멤브레인 가스필터의 제조 및 평가)

  • Kim, Nam-Hoon;Song, Han-Bok;Choi, Sung-Churl;Choa, Yong-Ho
    • Journal of Powder Materials
    • /
    • v.16 no.4
    • /
    • pp.262-267
    • /
    • 2009
  • Disk type porous nickel membrane was fabricated by in-situ reduction/sintering process using compacted NiO/PMMA (PMMA; Polymethyl methacrylate) mixture at $800^{\circ}C$ in hydrogen atmosphere. The porosity (49$\sim$58%) of these membrane was investigated as an amount of PMMA additive. The thermal decomposition and reduction behavior of NiO/PMMA were analyzed by TG/DTA in hydrogen atmosphere and the activation energy for the hydrogen reduction of NiO and thermal degradation of PMMA was calculated as 61.1 kJ/mol, evaluated by Kissinger method. Finally, the filtering performance and pressure drop were measured by particle counting system.

Simultaneous Synthesis and Consolidation of Nanostructured MoSi2-NbSi2 Composite by High-Frequency Induction Heated Sintering and Its Mechanical Properties

  • Kang, Hyun-Su;Shon, In-Jin
    • Korean Journal of Materials Research
    • /
    • v.24 no.4
    • /
    • pp.180-185
    • /
    • 2014
  • The current concern about these materials ($MoSi_2$ and $NbSi_2$) focuses on their low fracture toughness below the ductile-brittle transition temperature. To improve the mechanical properties of these materials, the fabrication of nanostructured and composite materials has been found to be effective. Nanomaterials frequently possess high strength, high hardness, excellent ductility and toughness, and more attention is being paid to their potential application. In this study, nanopowders of Mo, Nb, and Si were fabricated by high-energy ball milling. A dense nanostructured $MoSi_2-NbSi_2$ composite was simultaneously synthesized and sintered within two minutes by high-frequency induction heating method using mechanically activated powders of Mo, Nb, and Si. The high-density $MoSi_2-NbSi_2$ composite was produced under simultaneous application of 80MPa pressure and an induced current. The sintering behavior, mechanical properties, and microstructure of the composite were investigated. The average hardness and fracture toughness values obtained were $1180kg/mm^2$ and $3MPa{\cdot}m^{1/2}$, respectively. These fracture toughness and hardness values of the nanostructured $MoSi_2-NbSi_2$ composite are higher than those of monolithic $MoSi_2$ or $NbSi_2$.

Rapid Sintering and Synthesis of a Nanocrystalline Fe-Si3N4 Composites by High-Frequency Induction Heating (고주파유도 가열에 의한 나노구조 Fe-Si3N4 복합재료의 합성 및 급속소결)

  • Ko, In-Yong;Du, Song-Lee;Doh, Jung-Mann;Yoon, Jin-Kook;Park, Sang-Whan;Shon, In-Jin
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.9
    • /
    • pp.715-719
    • /
    • 2011
  • Nanopowders of $Fe_3N$ and Si were fabricated by high-energy ball milling. A dense nanostructured $12Fe-Si_3N_4$ composite was simultaneously synthesized and consolidated using a high-frequency induction-heated sintering method for 2 minutes or less from mechanically activated powders of $Fe_3N$ and Si. Highly dense $12Fe-Si_3N_4$ with a relative density of up to 99% was produced under simultaneous application of 80 MPa pressure and the induced current. The microstructure and mechanical properties of the composite were investigated.

Microstructure and mechanical properties of B4C-SiC composites (탄화붕소-탄화규소 복합체의 미세구조와 기계적 특성)

  • So, Sung Min;Kim, Kyoung Hun;Park, Joo Seok;Kim, Min Suk;Kim, Hyung Sun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.6
    • /
    • pp.338-344
    • /
    • 2019
  • B4C-SiC composites were fabricated using hot press sintering method without sintering additives at 1,900~2,000℃ under a pressure of 40 MPa. The crystal phase, relative density, microstructure, and mechanical properties of B4C-SiC composites were evaluated. When B4C and SiC were uniformly dispersed in the composite, grain growth was inhibited, and a sintered body with a fine and uniform microstructure, with improved mechanical properties, was fabricated. The relative density of B4C-SiC composites sintered under 2,000℃ of temperature and 40 MPa of pressure was over 99.8 %, and the bending strength and Vicker's hardness at 50 wt% of B4C were 645 MPa and 30.6 GPa, respectively.

Synthesis and Rapid Consolidation of W-1.5 ZrO2 Composite (W-1.5 ZrO2 복합재료 합성과 급속소결)

  • Kim, Seong-Eun;Shon, In-Jin
    • Korean Journal of Materials Research
    • /
    • v.28 no.11
    • /
    • pp.653-658
    • /
    • 2018
  • $ZrO_2$ is a candidate material for hip and knee joint replacements because of its excellent combination of biocompatibility, corrosion resistance and low density. However, the drawback of pure $ZrO_2$ is a low fracture toughness at room temperature. One of the most obvious tactics to cope with this problem is to fabricate a nanostructured composite material. Nanomaterials can be produced with improved mechanical properties(hardness and fracture toughness). The high-frequency induction heated sintering method takes advantage of simultaneously applying induced current and mechanical pressure during sintering. As a result, nanostructured materials can be achieved within very short time. In this study, W and $ZrO_2$ nanopowders are mechanochemically synthesized from $WO_3$ and Zr powders according to the reaction($WO_3+3/2Zr{\rightarrow}W+3/2ZrO_2$). The milled powders are then sintered using high-frequency induction heating within two minutes under the uniaxial pressure of 80MPa. The average fracture toughness and hardness of the nanostructured W-3/2 $ZrO_2$ composite sintered at $1300^{\circ}C$ are $540kg/mm^2$ and $5MPa{\cdot}m^{1/2}$, respectively. The fracture toughness of the composite is higher than that of monolithic $ZrO_2$. The phase and microstructure of the composite is also investigated by XRD and FE-SEM.

Improvement of surface quality of Tungsten-carbide core for glass micro molding (미세 유리 광부품 성형용 초경합금 코어의 표면거칠기 향상에 관한 연구)

  • Lee J.;Kim W.;Min B.;Kang S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.36-39
    • /
    • 2004
  • Glass molding is an advantageous method to manufacture glass micro optical components. However, it is difficult to make Tungsten Carbide core for glass microlens array. We have developed novel method to fabricate Tungsten Carbide core for micro glass components using pressure forming. Silicon masters were fabricated by micro machining. Tungsten Carbide core was fabricated by pressure forming and sintering. And we made high quality surface of Tungsten Carbide core by using the magnetic-field-assisted polishing process.

  • PDF

Effect of Cobalt to Bronze Ratio on Transverse Rupture Strength of Diamond Segments

  • Unal, Rahmi
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1146-1147
    • /
    • 2006
  • Diamond segments were fabricated by cold pressing and sintering under pressure at the temperature up to $750^{\circ}C$. Based on the results of this investigation, it can be concluded that the segments containing 39wt.% cobalt in the matrix material have the highest bending strength at a fracture probability of 50 % due to the weibull distribution method. According to the weibull statistics, it was also determined that the transverse rupture strength was the best for 39 wt.% cobalt ratio in the matrix material for the fracture probability when the other variables are the same.

  • PDF

Material properties and machining performance of CNT and Graphene reinforced hybrid alumina composites for micro electrical discharge machining (탄소나노튜브와 그래핀 강화 하이브리드 알루미나 복합재료의 재료특성 및 마이크로방전가공 성능)

  • Sung, Jin-Woo;Kim, Nam-Kyung;Kang, Myung-Chang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.6
    • /
    • pp.3-9
    • /
    • 2013
  • Aluminum Oxide($Al_2O_3$) ceramics are excellent candidates for such applications due to their outstanding mechanical, thermal, and tribological properties. However, they are difficult to machine using conventional mechanical methods. Carbon fillers, such as carbon nanotubes(CNT) and graphene nanoplatelets(GNP)can be dispersed in a ceramic matrix to improve the mechanical and electrical properties. In this study, CNT and Graphene reinforced hybrid ceramic composites were fabricated using the spark plasma sintering method at a temperature of $1,500^{\circ}C$, pressure of 40 MPa, and soaking time of 10min. Besides this, the material properties such as microstructure, crystal structure, hardness, and electrical conductivity were analyzed using FE-SEM, XRD, Vickers, and the 4-point probe method. A micro machining test was carried out to compare the effects of the material properties and the machining performance for CNT and Graphene reinforced ceramic composites.