DOI QR코드

DOI QR Code

Microstructure and mechanical properties of B4C-SiC composites

탄화붕소-탄화규소 복합체의 미세구조와 기계적 특성

  • So, Sung Min (Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Kyoung Hun (Korea Institute of Ceramic Engineering and Technology) ;
  • Park, Joo Seok (Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Min Suk (Information Materials Lab. Materials Engineering, Inha University) ;
  • Kim, Hyung Sun (Information Materials Lab. Materials Engineering, Inha University)
  • Received : 2019.11.18
  • Accepted : 2019.12.12
  • Published : 2019.12.31

Abstract

B4C-SiC composites were fabricated using hot press sintering method without sintering additives at 1,900~2,000℃ under a pressure of 40 MPa. The crystal phase, relative density, microstructure, and mechanical properties of B4C-SiC composites were evaluated. When B4C and SiC were uniformly dispersed in the composite, grain growth was inhibited, and a sintered body with a fine and uniform microstructure, with improved mechanical properties, was fabricated. The relative density of B4C-SiC composites sintered under 2,000℃ of temperature and 40 MPa of pressure was over 99.8 %, and the bending strength and Vicker's hardness at 50 wt% of B4C were 645 MPa and 30.6 GPa, respectively.

B4C-SiC 복합체를 소결 첨가제 없이 일축가압소결법을 통해 제조하였으며 소결체의 결정상, 상대밀도, 미세구조 및 기계적 특성을 평가하였다. 제조된 B4C-SiC 복합체에서 B4C와 SiC는 균일하게 분산되어 결정립 성장을 억제하고 세밀하고 균일한 미세구조를 형성하였으며 이를 통해 B4C-SiC 복합체의 기계적 특성을 향상시킬 수 있었다. 소결온도 2,000℃, 40 MPa 압력 조건에서 소결된 B4C-SiC 복합체의 상대밀도는 99.8 % 이상이었으며, B4C 50 wt% 조성 복합체의 꺾임 강도와 비커스 경도는 각각 약 625 MPa과 30 GPa로 측정되었다.

Keywords

References

  1. F. Thevenot, "Boron carbide - a comprehensive review", J. Eur. Ceram. Soc. 6 (1990) 205. https://doi.org/10.1016/0955-2219(90)90048-K
  2. L. Vargas Gonzalez, R.F. Speyer and J. Campbell, "Flexural strength, fracture toughness, and hardness of silicon carbide and boron carbide armor ceramics", Int. J. Appl. Ceram. Technol. 7 (2010) 643. https://doi.org/10.1111/j.1744-7402.2010.02501.x
  3. H. Lee and R.F. Speyer, "Pressureless sintering of boron carbide", J. Am. Ceram. Soc. 86 (2003) 1468. https://doi.org/10.1111/j.1151-2916.2003.tb03498.x
  4. T.K. Roy, C. Subramanian and A.K. Suri, "Pressureless sintering of boron carbide", Ceram. Int. 32 (2006) 227. https://doi.org/10.1016/j.ceramint.2005.02.008
  5. R. Telle, L.S. Sigl and K. Takagi, "Boride-based hard materials, in: Handbook of Ceramic Hard Materials" (Wiley-VCH Verlag GmbH, 2000) p. 802.
  6. A.K. Suri, C. Subramanian, J.K. Sonber and T.C.R.C Murthy, "Synthesis and consolidation of boron carbide: a review", Int. Mater. Rev. 55 (2010) 4. https://doi.org/10.1179/095066009X12506721665211
  7. M. Grujicic, B. Pandurangan, K.L. Koudela and B.A. Cheeseman, "A computational analysis of the ballistic performance of light-weight hybrid composite armors", Appl. Surf. Sci. 253 (2006) 730. https://doi.org/10.1016/j.apsusc.2006.01.016
  8. R. Angers and M. Beauvy, "Hot-pressing of boron carbide", Ceram. Int. 10 (1984) 49. https://doi.org/10.1016/0272-8842(84)90025-7
  9. C. Greskovich and J.H. Rosolowski, "Sintering of covalent solids", J. Am. Ceram. Soc. 59 (1976) 336. https://doi.org/10.1111/j.1151-2916.1976.tb10979.x
  10. X. Zhang, Z. Zhang, W. Wang, H. Che, X. Zhang, Y. Bai, L. Zhang and Z. Fu, "Densification behaviour and mechanical properties of $B_4C$-SiC intergranular/intragranular nanocomposites fabricated through spark plasma sintering assisted by mechanochemistry", Ceram. Int. 43 (2017) 1904. https://doi.org/10.1016/j.ceramint.2016.10.150
  11. C. Cheng, K.M. Reddy, A. Hirata, T. Fujita and M. Chen, "Structure and mechanical properties of boronrich boron carbides", J. Eur. Ceram. Soc. 37 (2017) 4514. https://doi.org/10.1016/j.jeurceramsoc.2017.06.017
  12. J.E. Zorzi, C.A. Perottoni and J. Da Jornada, "Hardness and wear resistance of $B_4C$ ceramics prepared with several additives", Mater. Lett. 59 (2005) 2932. https://doi.org/10.1016/j.matlet.2005.04.047
  13. M.S. Datta, A.K. Bandyopadhyay and B. Chaudhuri, "Sintering of nano crystalline ${\alpha}$ silicon carbide by doping with boron carbide", Bull. Mater. Sci. 25 (2002) 181. https://doi.org/10.1007/BF02711151
  14. V. Skorokhod and V.D. Krstic, "High strength-high toughness $B_4C-TiB_2$ composites", J. Mater. Sci. Lett. 19 (2000) 237. https://doi.org/10.1023/A:1006766910536
  15. K. Sairam, J.K. Sonber, T.S.R.C. Murthy, C. Subramanian, R.C. Hubli and A.K. Suri, "Development of $B_4C-HfB_2$ composites by reaction hot pressing", Int. J. Refract. Metals Hard Mater. 35 (2012) 32. https://doi.org/10.1016/j.ijrmhm.2012.03.004
  16. M.S. Asl, M.G. Kakroudi and B. Nayebi, "A fractographical approach to the sintering process in porous $ZrB_2-B_4C$ binary composites", Ceram. Int. 41 (2015) 379. https://doi.org/10.1016/j.ceramint.2014.08.081
  17. A. Li, Y. Zhen, Q. Yin, L. Ma and Y. Yin, "Microstructure and properties of (SiC, $TiB_2$)/$B_4C$ composites by reaction hot pressing", Ceram. Int. 32 (2006) 849. https://doi.org/10.1016/j.ceramint.2005.05.022
  18. Z. Zhang, X. Du, W. Wang, Z. Fu and H. Wang, "Preparation of $B_4C$-SiC composite ceramics through hot pressing assisted by mechanical alloying", Int. J. Refract. Met. Hard Mater. 41 (2013) 270. https://doi.org/10.1016/j.ijrmhm.2013.04.012
  19. B.M. Moshtaghioun, A.L. Ortiz, D. Gomez-Garcia and A. Dominguez-Rodriguez, "Toughening of super-hard ultra-fine grained $B_4C$ densified by spark-plasma sintering via SiC addition", J. Eur. Ceram. Soc. 33 (2013) 1395. https://doi.org/10.1016/j.jeurceramsoc.2013.01.018
  20. K. Raju and D. H. Yoon, "Sintering a dditives for SiC based on the reactivity: a review", Ceram. Int. 42 (2016) 17947. https://doi.org/10.1016/j.ceramint.2016.09.022
  21. Y. Murata and R.H. Smoak, "Densification of silicon carbide by addition of BN, BP and $B_4C$ and correlation to their solid solubilities", in Proceedings of the International Symposium on Factors in Densification and Sintering of Oxide and Non oxide Ceramics (Japan: Hakone) (1978) 382.
  22. M. Taya, S. Hayashi, A.S. Kobayashi and H.S. Yoon, "Toughening of a particulate-reinforced ceramic-matrix composite by thermal residual stress", J. Am. Ceram. Soc. 73 (1990) 1382. https://doi.org/10.1111/j.1151-2916.1990.tb05209.x