Browse > Article
http://dx.doi.org/10.3740/MRSK.2018.28.11.653

Synthesis and Rapid Consolidation of W-1.5 ZrO2 Composite  

Kim, Seong-Eun (Division of Advanced Materials Engineering, the Research Center of Hydrogen Fuel Cell, Chonbuk National University)
Shon, In-Jin (Division of Advanced Materials Engineering, the Research Center of Hydrogen Fuel Cell, Chonbuk National University)
Publication Information
Korean Journal of Materials Research / v.28, no.11, 2018 , pp. 653-658 More about this Journal
Abstract
$ZrO_2$ is a candidate material for hip and knee joint replacements because of its excellent combination of biocompatibility, corrosion resistance and low density. However, the drawback of pure $ZrO_2$ is a low fracture toughness at room temperature. One of the most obvious tactics to cope with this problem is to fabricate a nanostructured composite material. Nanomaterials can be produced with improved mechanical properties(hardness and fracture toughness). The high-frequency induction heated sintering method takes advantage of simultaneously applying induced current and mechanical pressure during sintering. As a result, nanostructured materials can be achieved within very short time. In this study, W and $ZrO_2$ nanopowders are mechanochemically synthesized from $WO_3$ and Zr powders according to the reaction($WO_3+3/2Zr{\rightarrow}W+3/2ZrO_2$). The milled powders are then sintered using high-frequency induction heating within two minutes under the uniaxial pressure of 80MPa. The average fracture toughness and hardness of the nanostructured W-3/2 $ZrO_2$ composite sintered at $1300^{\circ}C$ are $540kg/mm^2$ and $5MPa{\cdot}m^{1/2}$, respectively. The fracture toughness of the composite is higher than that of monolithic $ZrO_2$. The phase and microstructure of the composite is also investigated by XRD and FE-SEM.
Keywords
sintering; composite materials; nanomaterials; mechanical properties; synthesis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. M. Kwak, H. K. Park and I. J. Shon, Korean J. Met. Mater., 51, 341 (2013).   DOI
2 I.-J. Shon, J.-K. Yoon and K.-T. Hong, Met. Mater. Int., 24, 130 (2018).   DOI
3 I.-J. Shon, Int. J. Refract. Met. Hard Mater., 72, 257 (2018).   DOI
4 I.-J. Shon, Ceram. Int., 44, 2587 (2018).   DOI
5 I.-J. Shon, Korean J. Met. Mater., 51, 110 (2017).
6 I.-J. Shon, Ceram. Int., 43, 1612 (2017).   DOI
7 I.-J. Shon, J.-K. Yoon and K.-T. Hong, Korean J. Met. Mater., 55, 179 (2017).
8 I.-J. Shon, Int. J. Refract. Met. Hard Mater., 64, 242 (2017).   DOI
9 I.-J. Shon, Ceram. Int., 43, 890 (2017).   DOI
10 R. L. Coble, J. Appl. Phys., 41, 4798 (1970).   DOI
11 Z. Shen, M. Johnsson, Z. Zhao and M. Nygren, J. Am. Ceram. Soc., 85, 1921 (2002).   DOI
12 J. E. Garay, U. Anselmi-Tamburini, Z. A. Munir, S. C. Glade and P. Asoka-Kumar, Appl. Phys. Lett., 85, 573 (2004).   DOI
13 J. E. Garay, U. Anselmi-Tamburini and Z.A. Munir, Acta Mater., 51, 4487 (2003).   DOI
14 S.-M. Kwon, S.-J. Lee and I.-J. Shon, Ceram. Int., 41, 835 (2015).   DOI
15 C. Suryanarayana and M. Grant Norton, X-ray diffraction: A practical approach, p. 213, Plenum Press, New York, (1998).
16 K. Niihara, R. Morena and D. P. H. Hasselman, J. Mater. Sci. Lett., 1, 13 (1982).   DOI
17 R. Malewar, K. S. Kumar, B. S. Murty, B. Sarma and S. K. Pabi, J. Mater. Res., 22, 1200 (2007).   DOI