• Title/Summary/Keyword: Preclinical

Search Result 466, Processing Time 0.031 seconds

Synthesis of (4-$[^{18}F]$Fluorophenyl)triphenylphosphonium as a Mitochondrial Voltage Sensor for PET (PET영상용 미토콘드리아 막전위 감지기 (4-$[^{18}F]$Fluorophenyl)triphenylphosphonium의 합성)

  • Kim, Dong-Yeon;Yu, Kook-Hyun;Bom, Hee-Seung;Min, Jung-Joon
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.6
    • /
    • pp.561-565
    • /
    • 2007
  • Purpose: Lipophilic cations including tetraphenylphosphonium (TPP) salts penetrate the hydrophobic barriers of the plasma and mitochondrial membranes, resulting in accumulation in mitochondria in response to the negative inner transmembrane potentials. The development of radiolabeled phosphonium cations as a noninvasive imaging agent may serve as a new molecular "voltage sensor" probe to investigate the role of mitochondria in the pathophysiology and diagnosis of cancer. Materials and Methods: We have synthesized a reference compound (4-fluorophenyl)triphenylphosphonium (TPP) and a labeled compound $[^{18}F]$TPP via two step nucleophilic substitution of no-carrier-added $[^{18}F]$fluoride with the precursor, 4-iodophenyltrimethylammonium iodide, in the presence of Kryptofix-2.2.2 and $K_2CO_3$. Result: The reference compound (4-fluorophenyl)triphenylphosphonium (TPP) was synthesized in 60% yield. The radiolabeled compound $[^{18}F]$TPP was synthesized in $10\sim15%$ yield. The radiochemical purity of the $[^{18}F]$TPP was $95.57{\pm}0.51%$ (n=11). Conclusion: $[^{18}F]$TPP was successfully synthesized that might have a potential to be utilized as a novel myocardial or cancer imaging agent for PET. However, it is required to improve the radiochemical yield to apply $[^{18}F]$TPP in preclinical or clinical researches.

Development of PET Detector Module Measuring DOI using Multiple Reflectors (여러 반사체를 사용한 양전자방출단층촬영기기의 반응 깊이 측정 검출기 모듈 개발)

  • Kim, Neung Gyun;Kim, Gu;Kwak, Jong Hyeok;Lee, Seung-Jae
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.6
    • /
    • pp.825-830
    • /
    • 2019
  • A detector module measuring a depth of interaction was developed using silicon photomultiplier (SiPM) and two layers of scintillation crystal array treated with multiple reflectors. When reconstructing an image based on a signal obtained by using different types of reflector of each layer, the interaction positions of scintillation pixels and gamma rays could be tracked by utilizing the feature that all scintillation pixels were recorded at different positions. The bottom layer uses a specular reflector, and the top layer uses a diffuse reflector to differently process the size of the signal obtained from the SiPM. The optical grease was used to recude the sharp refractive index change between the layers of scintillator and the SiPM. The signals obtained from the 16 SiPMs were reduced to four signals using the Anger equations, and the images were reconstructed using them. All the scintillation pixels composed of the two layers appeared in the reconstructed image, which distinguished the layer where the scintillation pixels and gamma rays interacted. If the detectors, which measure the interaction depth of two layers using different reflectors, will be applied to preclinical positron emission tomography, the degradation of spatial resolution appearing outside the field of interest could be solved.

Variation of Nephrotoxicity Biomarkers by Urinary Storage Condition in Rats

  • Lee, Jung-Min;Han, Young-Hwan;Choi, Su-Jeong;Park, Ju-Seong;Jang, Jeong-Jun;Bae, Re-Ji-Na;Lee, Mi Ju;Kim, Myoung Jun;Lee, Yong-Hoon;Kim, Duyeol;Lee, Hye-Young;Park, Sun-Hee;Park, Cheol-Beom;Kang, Jin Seok;Kang, Jong-Koo
    • Toxicological Research
    • /
    • v.30 no.4
    • /
    • pp.305-309
    • /
    • 2014
  • Recently, there has been an increase in the use of several nephrotoxicity biomarkers in preclinical experiments. In addition, it has been indicated that the result may have been influenced by secondary factors, such as sample storage condition or storage period. In this study, we have assessed the variation in urinary nephrotoxicity biomarkers as a result of urine storage conditions and storage period of the urine. Urine was sampled from specific pathogen-free Sprague-Dawley rats (19 weeks old), which were housed individually in hanged stainless steel wire mesh cages. Urine was stored at $20^{\circ}C$, at $4^{\circ}C$, or at $-70^{\circ}C$ after sampling. The levels of the biomarkers such as beta-2 microglobulin (B2M), cystatin-C (Cys-C), N-acetyl-${\beta}$-D-glucosaminidase (NAG), micro albumin (MA), micro protein (MP) were measured at 6, 24, 48 and 144 hr after sampling. The B2M level was significantly decreased at 6, 24, 48, and 144 hr compared to 0 hr at $-70^{\circ}C$ (p < 0.05, p < 0.01, p < 0.05, and p < 0.05, respectively) and 24 and 144 hr at $20^{\circ}C$ (p < 0.01, p < 0.01, respectively). The Cys-C level was significantly decreased at 144 hr compared to 0 hr at $4^{\circ}C$ (p < 0.01), at $20^{\circ}C$ (p < 0.05) and at $70^{\circ}C$ (p < 0.01). MP and MA levels were not different for 144 hr in all storage conditions. Taken together, B2M and Cys-C levels were modulated by storage temperature and period. For the enhancement of test accuracy, it is suggested that strict protocols be established for samples to minimize the effects of the storage conditions on the detected levels of biomarkers.

Histopathological and Neurobehavioral Characterization in Adult Mice Exposed to Traumatic Brain Injury (C57BL/6 쥐 외상성 뇌손상 모델에서 뇌 손상 정도에 따른 조직병리학적 변화 및 신경행동학적 특징)

  • Oh, Ki Young;Choi, Dong Won;Jang, Moon Soon;Lee, Ji Han;Kim, Sang Chul;Park, Jung Soo;Lee, Suk Woo;Kim, Hoon
    • Journal of The Korean Society of Emergency Medicine
    • /
    • v.28 no.5
    • /
    • pp.457-466
    • /
    • 2017
  • Purpose: Traumatic brain injury (TBI) is a significant cause of morbidity and mortality worldwide. Severity of the initial insult is one of the most significant factors affecting outcome following TBI. In order to investigate the mechanisms of cellular injury and develop novel therapeutic strategies for TBI, we designed a standardized animal TBI model and evaluated histological and functional outcomes according to the degree of impact severity. Methods: Male adult C57Bl/6 mice underwent controlled cortical impact (CCI) at varying depths of deflection (1.0-2.0 mm). We performed hematoxylin and eosin staining at 7 days after recovery from TBI. Neurobehavioral characterization after TBI was analyzed by the Barnes maze test, passive avoidance test, open field test, rotarod test, tail suspension test, and light/dark test. Results: We observed a graded injury response according to the degree of deflection depths tested (diameter, 3 mm; velocity, 3 m/s; and duration, 500 ms) compared to sham controls. In the Barnes maze test, the severe TBI (2 mm depth) group showed reduced spatial memory as compared with the sham and mild TBI (1 mm depth) groups at 7 days after TBI. There was a significant difference in the results of the open field test and light/dark test among the three groups. Conclusion: Our findings demonstrate that the graded injury responses following TBI resulted in differential histopathological and behavioral outcomes in a mouse experimental CCI model. Thus, a model of CCI with histologic/behavioral outcome analysis may offer a reliable and convenient design for preclinical TBI research involving mice.

Mesenchymal Stem Cell-derived Exosomes: Applications in Cell-free Therapy (중간엽줄기세포유래 엑소좀: 비세포치료제로서의 활용)

  • Heo, June Seok;Kim, Jinkwan
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.50 no.4
    • /
    • pp.391-398
    • /
    • 2018
  • Mesenchymal stem cells (MSCs) are an attractive resource for refractory patients because of their anti-inflammatory/immunomodulatory capability and multi-lineage differentiation potential. The transplantation of MSCs has led to positive results in preclinical and clinical application to various diseases, including autoimmune disease, cardiovascular disease, cancer, liver cirrhosis, and ischemic stroke. On the other hand, studies have shown that paracrine factors, not direct cell replacement for damaged cells or tissue, are the main contributors in MSC-based therapy. More recently, evidence has indicated that MSC-derived exosomes play crucial roles in regulating the paracrine factors that can mediate tissue regeneration via transferring nucleic acids, proteins, and lipids to the local microenvironment and cell-to-cell communication. The use of these exosomes is likely to be beneficial for the therapeutic application of MSCs because their use can avoid harmful effects, such as tumor formation involved in cell transplantation. Therefore, therapeutic applications using MSC-derived exosomes might be safe and efficient strategies for regenerative medicine and tissue engineering. This review summarizes the recent advances and provides a comprehensive understanding of the role of MSC-derived exosomes as a therapeutic agent.

The Roles of Dietary Polyphenols in Brain Neuromodulation (뇌 신경조절에서의 식이 폴리페놀 화합물의 역할)

  • Lee, Hyeyoung;Lee, Heeseob
    • Journal of Life Science
    • /
    • v.28 no.11
    • /
    • pp.1386-1395
    • /
    • 2018
  • Over recent years, it has become evident that the central nervous system bidirectionally interacts with the gastrointestinal tract along the gut-brain axis. A series of preclinical studies indicate that the gut microbiota can modulate central nervous system function through a multitude of physiological functions. Polyphenols are ubiquitous plant chemicals included in foods such as fruits, vegetables, tea, coffee and wine, and their consumption is directly responsible for beneficial health effects due to antioxidant, anti-inflammatory, antimicrobial, immunomodulatory, anticancer, vasodilating, and prebiotic-like effects. There is increasing evidence that dietary polyphenol can contribute to beneficial effects in neuronal protection acting against oxidative stress and inflammatory injury as well as in cognitive functions. In this paper, we overview the neuroprotective role of dietary polyphenols especially focusing on the neuroinflammation and neurovascular function by interaction with the gut microbiome. Polyphenol metabolites could directly act as neurotransmitters crossing the blood-brain barrier and modulating the cerebrovascular system or indirectly modulating gut microbiota. In addition, evidence suggests that dietary polyphenols are effective in preventing and managing neurological disorders, such as age-related cognitive decline and neurodegeneration, through a multitude of physiological functions. Dietary polyphenols are increasingly envisaged as a potential nutraceuticals in the prevention and treatment of neurological disorders, because they possess the ability to reduce neuroinflammation, to improve memory and cognitive function and to modulate the gut microbiota.

Design of Two Layer Depth-encoding Detector Module with SiPM for PET (SiPM을 사용한 두 층의 반응 깊이를 측정하는 양전자방출단층촬영기기의 검출기 모듈 설계)

  • Lee, Seung-Jae
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.3
    • /
    • pp.319-324
    • /
    • 2019
  • A depth-encoding detector module with silicon photomultipliers(SiPMs) using two layers of scintillation crystal array was designed, and the position measurement capability was verified using DETECT2000. The depth of interaction of the crystal pixels with the gamma rays was tracked through the image acquired with the combination of surface treatment of the crystal pixels and reflectors. The bottom layer was treated as a reflector except for the optically coupled surfaces, and the crystals of top layer were optically coupled each other except for the outer surfaces so that the light sharing was made easier than the bottom layer. Flood images were obtained through the combination of specular reflectors and random reflectors, grounded and polished surfaces of crystal pixels, and the positions at which layer images were generated were measured and analyzed. The images were reconstructed using the Anger algorithm, whose the SiPM signals were reduced as the 16-channels to 4-channels. In the combination of the grounded surface and all reflectors, the depth positions were discriminated into two layers, whereas it was impossible to separate the two layers in the all polished surface combinations. Therefore, using the combination of grounded surface crystal pixels and reflectors could improve the spatial resolution at the outside of the field of view by measuring the depth position in preclinical positron emission tomography.

Are critical size bone notch defects possible in the rabbit mandible?

  • Carlisle, Patricia L.;Guda, Teja;Silliman, David T.;Hale, Robert G.;Baer, Pamela R. Brown
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.45 no.2
    • /
    • pp.97-107
    • /
    • 2019
  • Objectives: Small animal maxillofacial models, such as non-segmental critical size defects (CSDs) in the rabbit mandible, need to be standardized for use as preclinical models of bone regeneration to mimic clinical conditions such as maxillofacial trauma. The objective of this study is the establishment of a mechanically competent CSD model in the rabbit mandible to allow standardized evaluation of bone regeneration therapies. Materials and Methods: Three sizes of bony defect were generated in the mandibular body of rabbit hemi-mandibles: $12mm{\times}5mm$, $12mm{\times}8mm$, and $15mm{\times}10mm$. The hemi-mandibles were tested to failure in 3-point flexure. The $12mm{\times}5mm$ defect was then chosen for the defect size created in the mandibles of 26 rabbits with or without cautery of the defect margins and bone regeneration was assessed after 6 and 12 weeks. Regenerated bone density and volume were evaluated using radiography, micro-computed tomography, and histology. Results: Flexural strength of the $12mm{\times}5mm$ defect was similar to its contralateral; whereas the $12mm{\times}8mm$ and $15mm{\times}10mm$ groups carried significantly less load than their respective contralaterals (P<0.05). This demonstrated that the $12mm{\times}5mm$ defect did not significantly compromise mandibular mechanical integrity. Significantly less (P<0.05) bone was regenerated at 6 weeks in cauterized defect margins compared to controls without cautery. After 12 weeks, the bone volume of the group with cautery increased to that of the control without cautery after 6 weeks. Conclusion: An empty defect size of $12mm{\times}5mm$ in the rabbit mandibular model maintains sufficient mechanical stability to not require additional stabilization. However, this defect size allows for bone regeneration across the defect. Cautery of the defect only delays regeneration by 6 weeks suggesting that the performance of bone graft materials in mandibular defects of this size should be considered with caution.

Antioxidant and Anti-Cholesterol Activities of Standardized Ecklonia Stolonifera Extract (표준화된 곰피추출물의 항산화 활성 및 콜레스테롤 개선 효과)

  • Han, Xionggao;Kim, Woo-Hyeok;Choi, Sun-Il;Men, Xiao;Lee, Se-jeong;Jin, Heegu;Oh, Hyun-Ji;Kang, Dahye;Kim, HyungBin;Lee, Boo-Yong;Lee, Ok-Hwan
    • Journal of Food Hygiene and Safety
    • /
    • v.36 no.4
    • /
    • pp.353-362
    • /
    • 2021
  • Ecklonia stolonifera, which belongs to the family Laminariaceae, is an edible perennial brown marine alga that is widely distributed, and is rich in polyphenols, including dieckol. Here, we investigated the radical scavenging activities of E. stolonifera extract (ESE) using various in vitro models. We further evaluated the effect of ESE on the cholesterol secretion inhibition activity in HepG2 cells, as well as the hydroxymethylglutaryl-coenzyme A (HMG-CoA) reductase activity. Our results showed that the total phenol, total flavonoid, and dieckol contents of ESE were 9.64±0.04 mg GAE/g, 2.72±0.08 mg RE/g and 27.42±0.66 mg/g, respectively. The antioxidant activity of ESE increased in a dose-dependent manner. In addition, the ESE inhibited cholesterol secretion from HepG2 cells with anti-HMG-CoA reductase activity. These results suggested that ESE possesses antioxidant and anti-cholesterol activities, and can therefore be used as a preclinical bioresource for development of health functional foods.

New conceptual approaches toward dentin regeneration using the drug repositioning strategy with Wnt signaling pathways

  • Lee, Eui-Seon;Kim, Tae-Young;Aryal, Yam Prasad;Kim, Kihyun;Byun, Seongsoo;Song, Dongju;Shin, Yejin;Lee, Dany;Lee, Jooheon;Jung, Gilyoung;Chi, Seunghoon;Choi, Yoolim;Lee, Youngkyun;An, Chang-Hyeon;Kim, Jae-Young
    • International Journal of Oral Biology
    • /
    • v.46 no.2
    • /
    • pp.67-73
    • /
    • 2021
  • This study summarizes the recent cutting-edge approaches for dentin regeneration that still do not offer adequate solutions. Tertiary dentin is formed when odontoblasts are directly affected by various stimuli. Recent preclinical studies have reported that stimulation of the Wnt/β-catenin signaling pathway could facilitate the formation of reparative dentin and thereby aid in the structural and functional development of the tertiary dentin. A range of signaling pathways, including the Wnt/β-catenin pathway, is activated when dental tissues are damaged and the pulp is exposed. The application of small molecules for dentin regeneration has been suggested as a drug repositioning approach. This study reviews the role of Wnt signaling in tooth formation, particularly dentin formation and dentin regeneration. In addition, the application of the drug repositioning strategy to facilitate the development of new drugs for dentin regeneration has been discussed in this study.