Browse > Article
http://dx.doi.org/10.5352/JLS.2018.28.11.1386

The Roles of Dietary Polyphenols in Brain Neuromodulation  

Lee, Hyeyoung (Division of Applied Bioengineering, Dong-Eui University)
Lee, Heeseob (Department of Food Science and Nutrition, Pusan National University)
Publication Information
Journal of Life Science / v.28, no.11, 2018 , pp. 1386-1395 More about this Journal
Abstract
Over recent years, it has become evident that the central nervous system bidirectionally interacts with the gastrointestinal tract along the gut-brain axis. A series of preclinical studies indicate that the gut microbiota can modulate central nervous system function through a multitude of physiological functions. Polyphenols are ubiquitous plant chemicals included in foods such as fruits, vegetables, tea, coffee and wine, and their consumption is directly responsible for beneficial health effects due to antioxidant, anti-inflammatory, antimicrobial, immunomodulatory, anticancer, vasodilating, and prebiotic-like effects. There is increasing evidence that dietary polyphenol can contribute to beneficial effects in neuronal protection acting against oxidative stress and inflammatory injury as well as in cognitive functions. In this paper, we overview the neuroprotective role of dietary polyphenols especially focusing on the neuroinflammation and neurovascular function by interaction with the gut microbiome. Polyphenol metabolites could directly act as neurotransmitters crossing the blood-brain barrier and modulating the cerebrovascular system or indirectly modulating gut microbiota. In addition, evidence suggests that dietary polyphenols are effective in preventing and managing neurological disorders, such as age-related cognitive decline and neurodegeneration, through a multitude of physiological functions. Dietary polyphenols are increasingly envisaged as a potential nutraceuticals in the prevention and treatment of neurological disorders, because they possess the ability to reduce neuroinflammation, to improve memory and cognitive function and to modulate the gut microbiota.
Keywords
Gut-brain axis; gut microbiota; neurological disorders; nutraceuticals; polyphenols;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Frank, D. N. and Pace, N. R. 2008. Gastrointestinal microbiology enters the metagenomics era. Curr. Opin. Gastroenterol. 24, 4-10.   DOI
2 Frank-Cannon, T. C., Alto, L. T., McAlpine, F. E. and Tansey, M. G. 2009. Does neuroinflammation fan the flame in neurodegenerative diseases. Mol. Neurodegener. 4, 47.   DOI
3 Garcia-Lafuente, A., Guillamon, E., Villares, A., Rostagno, M. A. and Martinez, J. A. 2009. Flavonoids as anti-inflammatory agents: implications in cancer and cardiovascular disease. Inflamm. Res. 58, 537-552.   DOI
4 Ghanim, H., Sia, C. L., Abuaysheh, S., Korzeniewski, K., Patnaik, P., Marumganti, A., Chaudhuri, A. and Dandona, P. 2010. An antiinflammatory and reactive oxygen species suppressive effects of an extract of polygonum cuspidatum containing resveratrol. J. Clin. Endocrinol. Metab. 95, E1-8.
5 Graf, B. A., Milbury, P. E. and Blumberg, J. B. 2005. Flavonols, flavonones, flavanones and human health: epidemological evidence. J. Med. Food 8, 281-290.   DOI
6 Harris, K., Kassis, A., Major, G. and Chou, C. J. 2012. Is the gut microbiota a new factor contributing to obesity and its metabolic disorders? J. Obes. 2012, 879151.
7 Poulose, S. M., Fisher, D. R., Bielinski, D. F., Gomes, S. M., Rimando, A. M., Schauss, A. G. and Shukitt-Hale, B. 2014. Restoration of stressor-induced calcium dysregulation and autophagy inhibition by polyphenol-rich acai (Euterpe spp.) fruit pulp extracts in rodent brain cells in vitro. Nutrition 30, 853-862.   DOI
8 Jankord, R. and Herman, J. P. 2008. Limbic regulation of hypothalamo-pituitary-adrenocortical function during acute and chronic stress. Ann. N. Y. Acad. Sci. 1148, 64-73.   DOI
9 Hattori, M. and Taylor, T. D. 2009. The human intestinal microbiome: a new frontier of human biology. DNA Res. 16, 1-12.   DOI
10 Impey, S., Smith, D. M., Obrietan, K., Donahue, R., Wade, C. and Storm, D. R. 1998. Stimulation of cAMP response element (CRE)-mediated transcription during contextual learning. Nat. Neurosci. 1, 595-601.   DOI
11 Kennedy, D. O. 2014. Polyphenols and the human Brain: plant "secondary metabolite" ecologic roles and endogenous signaling functions drive benefits. Adv. Nutr. 5, 515-533.   DOI
12 Rendeiro, C., Rhodes, J. S. and Spencer, J. P. 2015. The mechanisms of action of flavonoids in the brain: direct versus indirect effects. Neurochem. Int. 89, 126-139.   DOI
13 Puupponen-Pimia, R., Aura, A. M., Oksman-Caldentey, K. M., Myllarinen, P., Saarela, M., Mattila-Sandholm, T. and Poutanen, K. 2002. Development of functional ingredients for gut health. Trends Food Sci. Tech. 13, 3-11.   DOI
14 Rastmanesh, R. 2011. High polyphenol, low probiotic diet for weight loss because of intestinal microbiota interaction. Chem. Biol. Interact. 189, 1-8.   DOI
15 Rendeiro, C., Vauzour, D., Rattray, M., Waffo-Teguo, P., Merillon, J. M., Butler, L. T., Williams C. M. and Spencer, J. P. 2013. Dietary levels of pure flavonoids improve spatial memory performance and increase hippocampal brain-derived neurotrophic factor. PLoS One 8, e63535.   DOI
16 Sandhu, K. V., Sherwin, E., Schellekens, H., Stanton, C., Dinan, T. G. and Cryan, J. F. 2017. Feeding the microbiota-gut-brain axis: Diet, microbiome, and neuropsychiatry. Transl. Res. 179, 223-244.   DOI
17 Sathyapalan, T., Beckett, S., Rigby, A. S., Mellor, D. D. and Atkin, S. L. 2010. High cocoa polyphenol rich chocolate may reduce the burden of the symptoms in chronic fatigue syndrome. Nutr. J. 9, 55.   DOI
18 Schroeter, H., Spencer, J. P., Rice-Evans, C. and Williams, R. J. 2001. Flavonoids protect neurons from oxidized low-density-lipoprotein-induced apoptosis involving c-Jun N-terminal kinase (JNK), c-Jun and caspase-3. Biochem. J. 358, 547-557.   DOI
19 Aura, A. M. 2008. Microbial metabolism of dietary phenolic compounds in the colon. Phytochem. Rev. 7, 407-429.   DOI
20 Aura, A. M., Martin-Lopez, P., O'Leary, K. A., Williamson, G., Oksman-Caldentey, K. M., Poutanen, K. and Santos-Buelga, C. 2005. In vitro metabolism of anthocyanins by human gut microflora. Eur. J. Nutr. 44, 133-142.   DOI
21 Backhed, F., Ley, R. E., Sonnenburg, J. L., Peterson, D. A. and Gordon, J. I. 2005. Host-bacterial mutualism in the human intestine. Science 307, 1915-1920.   DOI
22 Biasi, F., Astegiano, M., Maina, M., Leonarduzzi, G. and Poli, G. 2011. Polyphenol supplementation as a complementary medicinal approach to treating inflammatory bowel disease. Curr. Med. Chem. 18, 4851-4865.   DOI
23 Bowey, E., Adlercreutz, H. and Rowland, I. 2003. Metabolism of isoflavones and lignans by the gut microflora: a study in germ-free and human flora associated rats. Food Chem. Toxicol. 41, 631-636.   DOI
24 Breteler, M. M. 2000. Vascular risk factors for Alzheimer's disease: an epidemiologic perspective. Neurobiol. Aging 21, 153-160.
25 Brickman, A. M., Khan, U. A., Provenzano, F. A., Yeung, L. K., Suzuki, W., Schroeter, H., Wall, M., Sloan, R. P. and Small, S. A. 2014. Enhancing dentate gyrus function with dietary flavanols improves cognition in older adults. Nat. Neurosci. 17, 1798-1803.   DOI
26 Brown, W. R. and Thore, C. R. 2011. Cerebral microvascular pathology in ageing and neurodegeneration. Neuropathol. Appl. Neurobiol. 37, 56-74.   DOI
27 Arts, I. C. W. and Hollman, P. C. H. 2005. Polyphenols and disease risk in epidemiologic studies. Am. J. Clin. Nutr. 81, 317-325.   DOI
28 Khurana, S., Venkataraman, K., Hollingsworth, A., Piche, M. and Tai, T. C. 2013. Polyphenols: benefits to the cardiovascular system in health and in aging. Nutrients 5, 3779-3827.   DOI
29 Calani, L., Dall'Asta, M., Derlindati, E., Scazzina, F., Bruni, R. and Del Rio, D. 2012. Colonic metabolism of polyphenols from coffee, green tea, and hazelnut skins. J. Clin. Gastroenterol. 46, S95-S99.   DOI
30 Kessler, R. C., Berglund, P., Demler, O., Jin, R., Koretz, D., Merikangas, K. R., Rush, A. J., Walters, E. E. and Wang, P. S. 2003. The epidemiology of major depressive disorder: results from the national comorbidity survey replication (ncs-r). Jama 289, 3095-3105.   DOI
31 Kim, Y. H. 2016. Probiotics, prebiotics, synbiotics and human health. BT News 23, 17-22.
32 Krga, I., Monfoulet, L. E., Konic-Ristic, A., Mercier, S., Glibetic, M., Morand, C. and Milenkovic, D. 2016. Anthocyanins and their gut metabolites reduce the adhesion of monocyte to $TNF{\alpha}$-activated endothelial cells at physiologically relevant concentrations. Arch. Biochem. Biophys. 599, 51-59.   DOI
33 Ley, R. E., Turnbaugh, P. J., Klein, S. and Gordon, J. I. 2006. Microbial ecology: human gut microbes associated with obesity. Nature 444, 1022-1023.   DOI
34 Krikorian, R., Nash, T. A., Shidler, M. D., Shukitt-Hale, B. and Joseph, J. A. 2010. Concord grape juice supplementation improves memory function in older adults with mild cognitive impairment. Br. J. Nutr. 103, 730-734.   DOI
35 Lamport, D. J., Pal, D., Moutsiana, C., Field, D. T., Williams, C. M., Spencer, J. P. and Butler, L. T. 2015. The effect of flavanol-rich cocoa on cerebral perfusion in healthy older adults during conscious resting state: a placebo controlled, crossover, acute trial. Psychopharmacology 232, 3227-3234.   DOI
36 Levites, Y., Youdim, M. B., Maor, G. and Mandel, S. 2002. Attenuation of 6-hydroxydopamine (6-OHDA)-induced nuclear factor-kappaB (NF-kappaB) activation and cell death by tea extracts in neuronal cultures. Biochem. Pharmacol. 63, 21-29.   DOI
37 Spencer, J. P. 2008. Flavonoids: modulators of brain function? Br. J. Nutr. 99, ES60-77.   DOI
38 Serra, D., Almeidaa, L. M. and Dinisa, T. C. P. 2018. Dietary polyphenols: a novel strategy to modulate microbiota-gut-brain axis. Trends Food Sci. Technol. 78, 224-233.   DOI
39 Sorond, F. A., Lipsitz, L. A., Hollenberg, N. K. and Fisher, N. D. 2008. Cerebral blood flow response to flavanol-rich cocoa in healthy elderly humans. Neuropsychiatr. Dis. Treat 4, 433-440.
40 Sorond, F. A., Hurwitz, S., Salat, D. H., Greve, D. N. and Fisher, N. D. 2013. Neurovascular coupling, cerebral white matter integrity, and response to cocoa in older people. Neurology 81, 904-909.   DOI
41 Spencer, J. P. 2009. Flavonoids and brain health: multiple effects underpinned by common mechanisms. Genes Nutr. 4, 243-250.   DOI
42 Spencer, J. P., Vafeiadou, K., Williams, R. J. and Vauzour, D. 2012. Neuroinflammation: modulation by flavonoids and mechanisms of action. Mol. Aspects Med. 33, 83-97.   DOI
43 The Human Microbiome Project Consortium. 2012. A framework for human microbiome research. Nature 486, 215-221.   DOI
44 Tully, T., Bourtchouladze, R., Scott, R. and Tallman, J. 2003. Targeting the CREB pathway for memory enhancers. Nat. Rev. Drug Discov. 2, 267-277.   DOI
45 Turnbaugh, P. J., Ley, R. E., Mahowald, M. A., Magrini, V., Mardis, E. R. and Gordon, J. I. 2006. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027-1031.   DOI
46 Vauzour, D., VafeiAdou, K., Rice-Evans, C., Williams, R. J. and Spencer, J. P. 2007. Activation of pro-survival Akt and ERK1/2 signalling pathways underlie the anti-apoptotic effects of flavanones in cortical neurons. J. Neurochem. 103, 1355-1367.   DOI
47 Cryan, J. F. and Dinan, T. G. 2012. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci. 13, 701-712.   DOI
48 Agostinho, P., Cunha, R. A. and Oliveira, C. 2010. Neuroinflammation, oxidative stress and the pathogenesis of Alzheimer's disease. Curr. Pharm. Des. 16, 2766-2778.   DOI
49 Calder, P. C., Albers, R., Antoine, J. M., Blum, S., Bourdet-Sicard, R., Ferns, G. A., Folkerts, G., Friedmann, P. S., Frost, G. S., Guarner, F., Lovik, M., Macfarlane, S., Meyer, P. D., M'Rabet, L., Serafini, M., van Eden, W., van Loo, J., Vas Dias, W., Vidry, S., Winklhofer-Roob, B. M. and Zhao, J. 2009. Inflammatory disease processes and interactions with nutrition. Br. J. Nutr. 101, S1-45.   DOI
50 Casini, M. L., Marelli, G., Papaleo, E., Ferrari, A., D'Ambrosio, F. and Unfer, V. 2006. Psychological assessment of the effects of treatment with phytoestrogens on postmenopausal women: a randomized, double-blind, crossover, placebo-controlled study. Fert. Steril. 85, 972-978.   DOI
51 Dantzer, R. 2009. Cytokine, sickness behavior, and depression. Immunol. Allergy Clin. North Am. 29, 247-264.   DOI
52 DeGruttola, A. K., Low, D., Mizoguchi, A. and Mizoguchi, E. 2016. Current understanding of dysbiosis in disease in human and animal models. Inflamm. Bowel Dis. 22, 1137-1150.   DOI
53 Del Rio, D., Rodriguez-Mateos, A., Spencer, J. P., Tognolini, M., Borges, G. and Crozier, A. 2013. Dietary (poly) phenolics in human health: Structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid. Redox Signal. 18, 1818-1892.   DOI
54 Dias, G. P., Cavegn, N., Nix, A., do Nascimento Bevilaqua, M. C., Stangl, D., Zainuddin, M. S., Nardi, A. E., Gardino, P. F. and Thuret, S. 2012. The role of dietary polyphenols on adult hippocampal neurogenesis: molecular mechanisms and behavioural effects on depression and anxiety. Oxid. Med. Cell Longev. 2012, 541971.
55 Mayer, E. A., Knight, R., Mazmanian, S. K., Cryan, J. F. and Tillisch, K. 2014. Gut microbes and the brain: paradigm shift in neuroscience. J. Neurosci. 34, 15490-15496.   DOI
56 Lilly, D. M. and Stillwell, R. H. 1965. Probiotics: growth-promoting factors produced by microorganisms. Science 147, 747-748.   DOI
57 Manach, C., Williamson, G., Morand, C., Scalbert, A. and Remesy, C. 2005. Bioavailability and bioefficacy of polyphenols in humans. Am. J. Clin. Nutr. 81, 230S-242S.   DOI
58 Marques, C., Fernandes, I., Meireles, M., Faria, A., Spencer, J. P. E., Mateus, N. and Calhau, C. 2018. Gut microbiota modulation accounts for the neuroprotective properties of anthocyanins. Sci. Rep. 27, 11341.
59 Marin, L., Miguelez, E. M., Villar, C. J. and Lombo, F. 2015. Bioavailability of dietary polyphenols and gut microbiota metabolism: antimicrobial properties. Biomed. Res. Int. 2015, 905215.
60 Martin, K. R. 2010. Polyphenols as dietary supplements: A double-edged sword. Nutr. Diet. Suppl. 2, 1-12.
61 Messaoudi, M., Bisson, J. F., Nejdi, A., Rozan, P. and Javelot, H. 2008. Antidepressant-like effects of a cocoa olyphenolic extract in Wistar-Unilever rats. Nutr. Neurosci. 11, 269-276.   DOI
62 Mirescu, C. and Gould, E. 2006. Stress and adult neurogenesis. Hippocampus 16, 233-238.   DOI
63 Montiel-Castro, A. J., Gonzalez-Cervantes, R. M., Bravo-Ruiseco, G. and Pacheco-Lopez, G. 2013. The microbiota-gut-brain axis: neurobehavioral correlates, health and sociality. Front. Integr. Neurosci. 7, 70.
64 Moussa, C., Hebron, M., Huang, X., Ahn, J., Rissman, R. A., Aisen, P. S. and Turner, R. S. 2017. Resveratrol regulates neuro-inflammation and induces adaptive immunity in Alzheimer's disease. J. Neuroinflammation 14, 1-10.   DOI
65 Wang, D., Ho, L., Faith, J., Ono, K., Janle, E. M., Lachcik, P. J., Cooper, B. R., Jannasch, A. H., D'Arcy, B. R., Williams, B. A., Ferruzzi, M. G., Levine, S., Zhao, W., Dubner, L. and Pasinetti, G. M. 2015. Role of intestinal microbiota in the generation of polyphenol-derived phenolic acid mediated attenuation of Alzheimer's disease beta-amyloid oligomerization. Mol. Nutr. Food Res. 59, 1025-1040.   DOI
66 Vauzour, D. 2012. Dietary polyphenols as modulators of brain functions: biological actions and molecular mechanisms underpinning their beneficial effects. Oxid. Med. Cell Longev. 2012, 914273.
67 Vauzour, D. 2014. Effect of flavonoids on learning, memory and neurocognitive performance: relevance and potential implications for Alzheimer's disease pathophysiology. J. Sci. Food Agric. 94, 1042-1056.   DOI
68 Venigalla, M., Gyengesi, E. and Munch, G. 2015. Curcumin and Apigenin - novel and promising therapeutics against chronic neuroinflammation in Alzheimer's disease. Neural. Regen. Res. 10, 1181-1185.   DOI
69 Wang, H. X. and Wang, Y. P. 2016. Gut microbiota-brain axis. Chin. Med. J. 129, 2373-2380.   DOI
70 Westfall, S., Lomis, N., Kahouli, I., Dia, S. Y., Singh, S. P. and Prakash, S. 2017. Microbiome, probiotics and neurodegenerative diseases: deciphering the gut brain axis. Cell. Mol. Life Sci. 74, 3769-3787.   DOI
71 Williams, R. J., Spencer, J. P. and Rice-Evans, C. 2004. Flavonoids: antioxidants or signalling molecules? Free Radic. Biol. Med. 36, 838-849.   DOI
72 Eckburg, P. B., Bik, E. M., Bernstein, C. N., Purdom, E., Dethlefsen, L., Sargent, M., Gill, S. R., Nelson, K. E. and Relman, D. A. 2005. Diversity of the human intestinal microbial flora. Science 308, 1635-1638.   DOI
73 Williams, R. J. and Spencer, J. P. E. 2012. Flavonoids, cognition, and dementia: actions, mechanisms, and potential therapeutic utility for alzheimer disease. Free Radic. Biol. Med. 52, 35-45.   DOI
74 Witte, A. V., Kerti, L., Margulies, D. S. and Floel, A. 2014. Effects of resveratrol on memory performance, hippocampal functional connectivity, and glucose metabolism in healthy older adults. J. Neurosci. 34, 7862-7870.   DOI
75 di Gesso, J. L., Kerr, J. S., Zhang, Q., Raheem, S., Yalamanchili, S. K., O'Hagan, D., Kay, C. D. and O'Connell, M. A. 2015. Flavonoid metabolites reduce tumor necrosis factor-${\alpha}$ secretion to a greater extent than their precursor compounds in human THP-1 monocytes. Mol. Nutr. Food Res. 59, 1143-1154.   DOI
76 Dinan, T. G., Stanton, C. and Cryan, J. F. 2013. Psychobiotics: a novel class of psychotropic. Biol. Psychiatry 74, 720-726.   DOI
77 Duenas, M., Munoz-Gonzalez, I., Cueva, C., Jimenez-Giron, A., Sanchez-Patan, F., Santos-Buelga, C., Moreno-Arribas, M. V. and Bartolome, B. 2015. A survey of modulation of gut microbiota by dietary polyphenols. Biomed. Res. Int. 2015, 850902.
78 FAO/WHO. 2002. Guidelines for the evaluation of probiotics in food. Report of a joint FAO/WHO working group on drafting guidelines for the evaluation of probiotics in food. April 30-May 1. Ontario, Canada.
79 Farzaei, M. H., Rahimi, R. and Abdollahi, M. 2015. The role of dietary polyphenols in the management of inflammatory bowel disease. Curr. Pharm. Biotechnol. 16, 196-210.   DOI
80 Filosa, S., Di Meo, F. and Crispi, S. 2018. Polyphenols-gut microbiota interplay and brain neuromodulation. Neural Regen. Res. 13, 2055-2059.   DOI
81 Pipingas, A., Silberstein, R. B., Vitetta, L., Rooy, C. V., Harris, E. V., Young, J. M., Frampton, C. M., Sali, A. and Nastasi, J. 2008. Improved cognitive performance after dietary supplementation with a pinus radiata bark extract formulation. Phytother. Res. 22, 1168-1174.   DOI
82 Mrduljas, N., Kresic, G. and Bilusic, T. 2017. Polyphenols: Food sources and health benefits, pp. 23-41. In: Chavarri, M. (ed.), Functional Food-Improve Health through Adequate Food. IntechOpen: Rijeka, Croatia.
83 O'Brien, S. M., Scott, L. V. and Dinan, T. G. 2004. Cytokines: abnormalities in major depression and implications for pharmacological treatment. Hum. Psychopharmacol. 19, 397-403.   DOI
84 Flanagan, E., Muller, M., Hornberger, M. and Vauzour, D. 2018. Impact of flavonoids on cellular and molecular mechanisms underlying age-related cognitive decline and neurodegeneration. Curr. Nutr. Rep. 7, 49-57.   DOI
85 Fraga, C. G., Galleano, M., Verstraeten, S. V. and Oteiza, P. I. 2010. Basic biochemical mechanisms behind the health benefits of polyphenols. Mol. Aspects Med. 31, 435-445.   DOI
86 Pase, M. P., Scholey, A. B., Pipingas, A., Kras, M., Nolidin, K., Gibbs, A., Wesnes, K. and Stough, C. 2013. Cocoa polyphenols enhance positive mood states but not cognitive performance: a randomized, placebo-controlled trial. J. Psychopharmacol. 27, 451-458.   DOI
87 Pasinetti, G. M., Singh, R., Westfall, S., Herman, F., Faith, J. and Ho, L. 2018. The role of the gut microbiota in the metabolism of polyphenols as characterized by gnotobiotic mice. J. Alzheimers Dis. 63, 409-421.   DOI
88 Peluso, I., Raguzzini, A. and Serafini, M. 2013. Effect of flavonoids on circulating levels of TNF-${\alpha}$ and IL-6 in humans: a systematic review and metaanalysis. Mol. Nutr. Food Res. 57, 784-801.   DOI
89 Poulose, S. M., Fisher, D. R., Larson, J., Bielinski, D. F., Rimando, A. M., Carey, A. N., Schauss, A. G. and Shukitt-Hale, B. 2012. Anthocyanin-rich acai (Euterpe oleracea Mart.) fruit pulp fractions attenuate inflammatory stress signaling in mouse brain BV-2 microglial cells. J. Agric. Food Chem. 60, 1084-1093.   DOI
90 Xu, Y., Ku, B. S., Yao, H. Y., Lin, Y. H., Ma, X., Zhang, Y. H. and Li, X. J. 2005. The effects of curcumin on depressive-like behaviors in mice. Eur. J. Pharmacol. 518, 40-46.   DOI
91 Xu, Y., Wang, Z., You, W., Zhang, X., Li, S., Barish, P. A., Vernon, M. M., Du, X., Li, G., Pan, J. and Ogle, W. O. 2010. Antidepressant-like effect of trans-resveratrol: involvement of serotonin and noradrenaline system. Eur. Neuropsychopharmacol. 20, 405-413.   DOI
92 Yoon, J. A. and Shin, K. O. 2017. Studies on the function of lactic acid bacteria and related yeasts in probiotics: a review. Kor. J. Food Nutr. 30, 395-404.
93 Zoetendal, E. G., Vaughan, E. E. and de Vos, W. M. 2006. A microbial world within us. Mol. Microbiol. 59, 1639-1650.   DOI
94 Zhu, W. L., Shi, H. S., Wei, Y. M., Wang, S. J., Sun, C. Y., Ding, Z. B. and Lu, L. 2012. Green tea polyphenols produce antidepressant-like effects in adult mice. Pharmacol. Res. 65, 74-80.   DOI