• 제목/요약/키워드: Precedence constraints

검색결과 59건 처리시간 0.025초

SIMULATED ANNEALING FOR LINEAR SCHEDULING PROJECTS WITH MULTIPLE RESOURCE CONSTRAINTS

  • C.I. Yen
    • 국제학술발표논문집
    • /
    • The 2th International Conference on Construction Engineering and Project Management
    • /
    • pp.530-539
    • /
    • 2007
  • Many construction projects such as highways, pipelines, tunnels, and high-rise buildings typically contain repetitive activities. Research has shown that the Critical Path Method (CPM) is not efficient in scheduling linear construction projects that involve repetitive tasks. Linear Scheduling Method (LSM) is one of the techniques that have been developed since 1960s to handle projects with repetitive characteristics. Although LSM has been regarded as a technique that provides significant advantages over CPM in linear construction projects, it has been mainly viewed as a graphical complement to the CPM. Studies of scheduling linear construction projects with resource consideration are rare, especially with multiple resource constraints. The objective of this proposed research is to explore a resource assignment mechanism, which assigns multiple critical resources to all activities to minimize the project duration while satisfying the activities precedence relationship and resource limitations. Resources assigned to an activity are allowed to vary within a range at different stations, which is a combinatorial optimization problem in nature. A heuristic multiple resource allocation algorithm is explored to obtain a feasible initial solution. The Simulated Annealing search algorithm is then utilized to improve the initial solution for obtaining near-optimum solutions. A housing example is studied to demonstrate the resource assignment mechanism.

  • PDF

Resource-constrained Scheduling at Different Project Sizes

  • Lazari, Vasiliki;Chassiakos, Athanasios;Karatzas, Stylianos
    • 국제학술발표논문집
    • /
    • The 9th International Conference on Construction Engineering and Project Management
    • /
    • pp.196-203
    • /
    • 2022
  • The resource constrained scheduling problem (RCSP) constitutes one of the most challenging problems in Project Management, as it combines multiple parameters, contradicting objectives (project completion within certain deadlines, resource allocation within resource availability margins and with reduced fluctuations), strict constraints (precedence constraints between activities), while its complexity grows with the increase in the number of activities being executed. Due to the large solution space size, this work investigates the application of Genetic Algorithms to approximate the optimal resource alolocation and obtain optimal trade-offs between different project goals. This analysis uses the cost of exceeding the daily resource availability, the cost from the day-by-day resource movement in and out of the site and the cost for using resources day-by-day, to form the objective cost function. The model is applied in different case studies: 1 project consisting of 10 activities, 4 repetitive projects consisting of 40 activities in total and 16 repetitive projects consisting of 160 activities in total, in order to evaluate the effectiveness of the algorithm in different-size solution spaces and under alternative optimization criteria by examining the quality of the solution and the required computational time. The case studies 2 & 3 have been developed by building upon the recurrence of the unit/sub-project (10 activities), meaning that the initial problem is multiplied four and sixteen times respectively. The evaluation results indicate that the proposed model can efficiently provide reliable solutions with respect to the individual goals assigned in every case study regardless of the project scale.

  • PDF

생산공급사슬에서의 아웃소싱을 고려한 공정계획 및 일정계획의 통합을 위한 모델 (A Model for Integration of Process Planning and Scheduling with Outsourcing in Manufacturing Supply Chain)

  • 정찬석;이영해;문치웅
    • 산업공학
    • /
    • 제13권3호
    • /
    • pp.512-520
    • /
    • 2000
  • An integrated process planning and scheduling model considering outsourcing in manufacturing supply chain is proposed in this paper. The process planning and scheduling considering outsourcing are actually interrelated and should be solved simultaneously. The proposed model considers the alternative process plans for job types, precedence constraints of job operations, due date of production, transportation time and production information for outsourcing. The integrated states include:(1) Operations sequencing, (2) Machine selection, (3) Scheduling with outsourcing under the due date. To solve the model, a heuristic approach based on genetic algorithm(GA) is developed. The proposed approach minimizes the makespan considering outsourcing and shows the best operation-sequences and schedule of all jobs.

  • PDF

APPLICATION OF CONSTRAINT LOGIC PROGRAMMING TO JOB SEQUENCING

  • Ko, Jesuk;Ku, Jaejung
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 2000년도 춘계공동학술대회 논문집
    • /
    • pp.617-620
    • /
    • 2000
  • In this paper, we show an application of constraint logic programming to the operation scheduling on machines in a job shop. Constraint logic programming is a new genre of programming technique combining the declarative aspect of logic programming with the efficiency of constraint manipulation and solving mechanisms. Due to the latter feature, combinatorial search problems like scheduling may be resolved efficiently. In this study, the jobs that consist of a set of related operations are supposed to be constrained by precedence and resource availability. We also explore how the constraint solving mechanisms can be defined over a scheduling domain. Thus the scheduling approach presented here has two benefits: the flexibility that can be expected from an artificial intelligence tool by simplifying greatly the problem; and the efficiency that stems from the capability of constraint logic programming to manipulate constraints to prune the search space in an a priori manner.

  • PDF

A Term-based Language for Resource-Constrained Project Scheduling and its Complexity Analysis

  • Kutzner, Arne;Kim, Pok-Son
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제12권1호
    • /
    • pp.20-28
    • /
    • 2012
  • We define a language $\mathcal{RS}$, a subclass of the scheduling language $\mathcal{RS}V$ (resource constrained project scheduling with variant processes). $\mathcal{RS}$ involves the determination of the starting times for ground activities of a project satisfying precedence and resource constraints, in order to minimize the total project duration. In $\mathcal{RS}$ ground activities and two structural symbols (operators) 'seq' and 'pll' are used to construct activity-terms representing scheduling problems. We consider three different variants for formalizing the $\mathcal{RS}$-scheduling problem, the optimizing variant, the number variant and the decision variant. Using the decision variant we show that the problem $\mathcal{RS}$ is $\mathcal{NP}$-complete. Further we show that the optimizing variant (or number variant) of the $\mathcal{RS}$-problem is computable in polynomial time iff the decision variant is computable in polynomial time.

OPTIMAL PERIOD AND PRIORITY ASSIGNMENT FOR A NETWORKED CONTROL SYSTEM SCHEDULED BY A FIXED PRIORITY SCHEDULING SYSTEM

  • Shin, M.;SunWoo, M.
    • International Journal of Automotive Technology
    • /
    • 제8권1호
    • /
    • pp.39-48
    • /
    • 2007
  • This paper addresses the problem of period and priority assignment in networked control systems (NCSs) using a fixed priority scheduler. The problem of assigning periods and priorities to tasks and messages is formulated as an optimization problem to allow for a systematic approach. The temporal characteristics of an NCS should be considered by defining an appropriate performance index (PI) which represents the temporal behavior of the NCS. In this study, the sum of the end-to-end response times required to process all I/Os with precedence relationships is defined as a PI. Constraints are derived from the task and message deadline requirements to guarantee schedulability. Genetic algorithms are used to solve this constrained optimization problem because the optimization formulation is discrete and nonlinear. By considering the effects of communication, an optimum set of periods and priorities can be holistically derived.

Base-Identity Effects in Some Morphophonemic Alternations in English

  • Kim, Heeyong
    • 한국영어학회지:영어학
    • /
    • 제2권2호
    • /
    • pp.185-205
    • /
    • 2002
  • Within the framework of Generalized Sympathy (GS) (Jun 1999), this paper investigates the reasons why phonological rules such as Cluster Simplification, Closed Syllable ${\ae}$-Tensing, and Belfast Dentalization overapply or underapply in Class 2 affixed words in English. According to GS, a morphologically independent word can be treated as a derived word in that it is assumed to have any possible outputs as bases to resemble. As a result, a correspondence relation is triggered between a morphologically independent word being represented as Derived (D) and any possible outputs represented as Base (B), i.e., BD-Faith. In analyses of affixed words, BA-Faith is evoked, instead of BD-Faith. Furthermore, as Benua (1997) suggests, BA-Faith is classified into two correspondence relations; $BA_1$-Faith between Base and Class 1 affixed words, and $BA_2$-Faith between Base and Class 2 affixed words. When the $BA_1$-Faith takes precedence over phonological constraints three rules misapply in Class 2 affixed words. In other words, the misapplications are driven by base-identity effects.

  • PDF

복수의 CPU로 제어되는 매니퓰레이터의 병렬계산 알고리즘 (Algorithm or Parallel Computation for a multi-CPU controlled Robot Manipulator)

  • 우광방;김현기;최규석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1987년도 전기.전자공학 학술대회 논문집(I)
    • /
    • pp.288-292
    • /
    • 1987
  • The purpose of this paper is to develope the parallel computation algorithm that enables it to minimize the completion tine of computation execution of the entire subtasks, under the constraints of the series-parallel precedence relation in each subtask. The developed algorithm was applied to the control of a robot manipulator functioned by multi-CPU's and to obtain the minimum time schedule so that real time control may be achieved. The completion time of computation execution was minimized by applying "Variable" Branch and Bound algorithm which was developed In this paper in determining the optimum ordered schedule for each CPU.

  • PDF

PROJECT SCHEDULING WITH START-TIME DEPENDENT COST AND IMPRECISE DURATION

  • Siamak Haji Yakhchali
    • 국제학술발표논문집
    • /
    • The 4th International Conference on Construction Engineering and Project Management Organized by the University of New South Wales
    • /
    • pp.468-473
    • /
    • 2011
  • The goal of a project manager is generally to minimize the cost of the project and also to cope with uncertainty. This paper deals with the problem of project scheduling a set of activities satisfying precedence constraints in order to minimize the sum of the costs associated with the starting times of the activities in the network with imprecise activity durations, represented by means of interval or fuzzy numbers. So far this problem has been completely solved by several authors when the activities durations have crisp values. However, they do not consider the imprecision in activity durations in their models. Here the framework of possibility theory is proposed to solve this problem. In fuzzy arithmetic, usually, the interval calculations are used for the aim of complexity reduction and simplification. Thus the case of interval-valued durations is first addressed, and then extended to fuzzy intervals. A numerical example is used to illustrate the developed concept.

  • PDF

Balancing assembly line in an electronics company

  • 박경철;강석훈;박성수;김완희
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회 1993년도 추계학술대회발표논문집; 서강대학교, 서울; 25 Sep. 1993
    • /
    • pp.12-19
    • /
    • 1993
  • In general, the line balancing problem is defined as of finding an assignment of the given jobs to the workstations under the precedence constraints given to the set of jobs. Usually, the objective is either minimizing the cycle time under the given number of workstations or minimizing the number of workstations under the given cycle time. In this paper, we present a new type of an assembly line balancing problem which occurs in an electronics company manufacturing home appliances. The main difference of the problem compared to the general line balancing problem lies in the structure of the precedence given to the set of jobs. In the problem, the set of jobs is partitioned into two disjoint subjects. One is called the set of fixed jobs and the other, the set of floating jobs. The fixed jobs should be processed in the linear order and some pair of the jobs should not be assigned to the same workstations. Whereas, to each floating job, a set of ranges is given. The range is given in terms of two fixed jobs and it means that the floating job can be processed after the first job is processed and before the second job is processed. There can be more than one range associated to a floating job. We present a procedure to find an approximate solution to the problem. The procedure consists of two major parts. One is to find the assignment of the floating jobs under the given (feasible) assignment of the fixed jobs. The problem can be viewed as a constrained bin packing problem. The other is to find the assignment of the whole jobs under the given linear precedence on the set of the floating jobs. First problem is NP-hard and we devise a heuristic procedure to the problem based on the transportation problem and matching problem. The second problem can be solved in polynomial time by the shortest path method. The algorithm works in iterative manner. One step is composed of two phases. In the first phase, we solve the constrained bin packing problem. In the second phase, the shortest path problem is solved using the phase 1 result. The result of the phase 2 is used as an input to the phase 1 problem at the next step. We test the proposed algorithm on the set of real data found in the washing machine assembly line.

  • PDF