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ABSTRACT: The goal of a project manager is generally to minimize the cost of the project and also to cope with 
uncertainty. This paper deals with the problem of project scheduling a set of activities satisfying precedence constraints 
in order to minimize the sum of the costs associated with the starting times of the activities in the network with imprecise 
activity durations, represented by means of interval or fuzzy numbers. So far this problem has been completely solved by 
several authors when the activities durations have crisp values. However, they do not consider the imprecision in activity 
durations in their models. Here the framework of possibility theory is proposed to solve this problem. In fuzzy arithmetic, 
usually, the interval calculations are used for the aim of complexity reduction and simplification. Thus the case of 
interval-valued durations is first addressed, and then extended to fuzzy intervals. A numerical example is used to 
illustrate the developed concept. 
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1. INTRODUCTION 

The CPM  [24] is a network-based method designed to 
assist in the planning, scheduling and control of real 
world projects and CPM has become one of the tools that 
are most useful in practice. Its objective is to minimize 
the makespan of the project. The activity durations in the 
CPM are deterministic and known, although precise 
information about the durations of activities is seldom 
available. To deal quantitatively with imprecise data, the 
Program Evaluation and Review Technique (PERT)  [27] 
and Monte Carlo simulation (e.g.,  [25],  [37]) based on 
probability theory can be employed. So far, in the 
literature, hundreds of papers have used these stochastic 
approaches and search on this area is still carried out 
(e.g  [13],  [14] and  [39]). However, these stochastic 
methods rely on statistical data or subjective probabilities, 
which are out of reach in many cases  [26], and on 
dubious independence assumptions  [6]. The detailed 
critiques of PERT can be found in the work of Shipley et 
al.  [38]. 

Since the pioneering work of Zadeh  [51], other 
researchers in this field have started to reject the 
stochastic approaches and recommend the use of fuzzy 
models for activity durations. The advocates of the fuzzy 
activity duration approach argue that probability 
distributions for the activity duration are unknown due to 
the lack of historical data. As activity duration has been 
estimated by human experts, often in a non-repetitive or 
even unique setting, project management is often 
confronted with judgmental statements that are imprecise. 
In these situations, the fuzzy set scheduling literature 
recommends the use of fuzzy numbers for modeling 

activity durations rather than stochastic variables. Instead 
of probability distributions, these quantities make use of 
possibility distributions  [52]. 

In particular, the problems of computing the intervals 
of possible values of the latest starting times and floats of 
activities with imprecise durations represented by fuzzy 
or interval numbers have attracted attentions intensively 
and many solution methods have been proposed. Most of 
them are straightforward extensions of deterministic CPM 
( [9],  [19],  [28],  [35]). These methods compute the 
possible values of the earliest starting times by means of a 
forward recursion procedure comparable to the one used 
in classical CPM problems. However, as pointed out by 
several authors  [21], the backward recursion does not 
work for reasoning under uncertainty. When durations are 
described by means of fuzzy intervals, the backward 
recursion takes the imprecision of some duration twice 
into account  [11]. Kaufmann and Gupta  [23], Hapke et 
al.  [20] and Rommelfanger  [34] proposed a backward 
recursion that relies on the ‘optimistic’ fuzzy subtraction 
and they provided good results for particular networks but 
these methods fail to compute the fuzzy latest starting 
times and floats in the general networks. Nasution  [33] 
resorts to symbolic computations on the variable duration 
times. McCahon and Lee  [30] Mon et al.  [31] and Yao 
and Lin  [50] propose to go back to standard critical path 
methods via defuzzification of the fuzzy activity 
durations. 

Zielinski  [53] completely solved the problems of 
determining the possible values of the latest starting times 
of a given activity (see  [42]). Yakhchali and 
Ghodsypour  [45] proposed a simple polynomial 
algorithm for these problems which improves complexity 
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by a constant factor. They also proposed algorithms for 
computing the latest starting times and maximal floats in 
a network with imprecise activity and time lag 
durations  [48]. Dubois et al.  [12] have proposed an 
efficient algorithm based on path enumeration to compute 
optimal intervals for latest starting times and floats. In 
practice it is often necessary to specify other than the 
finish-start precedence relations, so Yakhchali and 
Ghodsypour  [44] proposed a polynomial algorithm for 
these problems in networks with generalized precedence 
relations. They suggested an algorithm for computing 
both the possible values of the latest starting times and 
the floats of all activities  [46] and proposed a polynomial 
algorithm for computing the minimal latest starting times 
of all activities  [47] in networks with generalized 
precedence relations and imprecise durations. Fortin et 
al.  [18] have provided a complete solution to the problem 
of finding the maximal floats of activities and Yakhchali 
and Ghodsypour  [43] have proposed a hybrid genetic 
algorithm for the problem of finding the minimal floats of 
activities. 

Chanas and colleagues proposed a series of studies on 
the topic of the fuzzy CPM problem. For example, 
Chanas et al.  [2] studied necessarily critical activities; 
Chanas and Zielinski  [4] discussed the complexity of 
criticality; Chanas and Zielinski  [3] proposed a natural 
generalization of the criticality concept for project 
networks with interval and fuzzy activity times, in which 
two methods of calculating the degree of possible 
criticality and some results are provided. The problems of 
the necessarily and possibly critical paths in the networks 
with imprecise activity and time lags durations have been 
discussed by Yakhchali et al.  [40],  [41] and the problems 
of the criticality of paths in the networks with generalized 
precedence relations and imprecise durations have been 
proposed in  [49]. Chen  [5] proposed a novel approach 
based on the extension principle and linear programming 
formulation to critical path analysis for a project network 
with activity times.  

As already mentioned, the traditional objective, 
suggested by the CPM model, is to minimize the 
makespan of the project. Over the years, this assumption 
has been relaxed and many research efforts have been 
directed towards project scheduling with other objectives 
(see  [22] for a review). One of the objectives, that 
generalizes many popular objective functions, is to 
minimize irregular starting time costs. The project 
scheduling problem with irregular starting time costs 
(PSIC) arises in several real-life applications of activity 
scheduling (e.g., in aircraft landing). Moreover, it arises 
in computing valid lower bounds to both the Resource 
Constrained Project Scheduling Problem and the 
Resource Availability Cost Problem, when the resource 
constraints are relaxed in a Lagrangean fashion  [29].  

Maniezzo and Mingozzi  [29] develop a branch-and-
bound procedure for this problem and identify special 
cases that are solvable in polynomial time. Mohring et 
al.  [32] present a collection of previously established 
results which show that the general problem is solvable in 
polynomial time and review some related results for 
specializations and generalizations of the problem. 

Although the project scheduling problem with irregular 
starting time costs is discussed, this problem with 
imprecise activity durations was not addressed in the 
literature. So, we provide the full picture of this problem 
in the following. 

2. The problem definition 

The project scheduling problems to be dealt with 
throughout this paper in the project network can be stated 
as follows. A set V={1,2, …, n} of activities has to be 
executed where the dummy activities 1 and n represent 
the beginning and the termination of the project, 
respectively. Activity durations i V are chosen from 
intervals ,  which contains possible 
duration of i V. Activities can be represented by an 
activity-on-node (AON) network G=<V, E > with node 
set V and arc set E, |E|=m. We assume, without loss of 
generality, that the nodes are topologically numbered 
such that an arc always leads from a smaller to a higher 
node number. 

The starting of activity i V at time t involves a cost 

. It is assumed that an upper bound T on the project 
duration is given such that t=0,1,2, …, T.  The objective 
is to schedule the activities such that the start-time 
dependent costs are minimized. 

The notation of configuration denoted by  has been 
defined by Buckley Error! Reference source not found. 
to relate the interval case to the deterministic case. A 

configuration is tuple  ( ) of activity 
durations such that , . For a configuration , 

 will denote the duration of the activity i.  
denotes the zero-one variable which equals 1 when the 
activity i start at time t in the configuration  and 

 otherwise.  
Thus, the minimum of the start-time dependent costs in 

the configuration Ω, denoted by w*(Ω), can be calculated 
by the following integer programming formulation 
(Error! Reference source not found., Error! Reference 
source not found.): 
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The objection function in (1) is to minimize the start-

time dependent costs in the configuration . The 
constraints in (2) enforce a unique starting time for each 
activity. Inequality (3) denotes the precedence relations 
and  denotes the optimal solution for formulas (1-4).  

In the case of interval activity durations, the bounds of 
possible value of the minimum of project costs, denoted 
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of possible configurations of activity durations, i.e.  is 

the Cartesian product of corresponding intervals , i V  
and there are obviously  such configurations. Thus, 

 and . The main aim in 
this paper is to determine the values of  and . 

The trivial problem of Figure 1 easily illustrates the 
difficulty of the problem. The precedence relations are the 
finish-start type. The number above each node represents 
the activity duration. 

 
Figure 1: A network with interval activity durations 

and start-time dependent costs  

The value of starting cost  is shown in Figure 2. 

 

Figure 2: The value of starting cost  for the 
activities in Figure 1. 

In Table 1, there exist  configurations as shown in 
Figure 1. The minimum cost of each configuration is 
computed, so . 

Table 1: The minimum cost of each configuration in 
Figure 1. 

 
 
3. Determination of the minimum cost in a network 

with interval activity durations 
 
Lemma 1 and Lemma 2 are useful for determining the 

bound of the minimum cost, . 
Lemma 1: Assume that Vk  is a distinguished activity 

and  ,   is a configuration that   kk dd  . If '  is 
a configuration that defines as formula (5) then 
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Proof: We conduct an indirect proof. Assume on the 

contrary that     *w'*w . Since  X  is not a 
feasible solution for '  (otherwise     X'X  and 

    *w'*w ). 
All feasible solutions for formulas (1-4) for the 

configuration   are the feasible solution for the 
configuration '  because all the activities , 

 and . This contradicts that  X  

is not a feasible solution for ' . Thus 
    *w'*w . 

Lemma 2: Assume that Vk  is a distinguished 

activity and  ,   is a configuration that   kk dd  . 

If '  is a configuration that defines as formula (6) then 
    *w'*w . 
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 (6) 
Proof: The proof goes in the similar manner to the one 

of Lemma 1. 
The optimistic configuration, denoted by  , is a 

configuration   that ii d)(d   for all Ai . 

Similarly   , called the pessimistic configuration, is a 

configuration   that ii d)(d   for all Ai . Lemma 
3 calculates the bound of the minimum cost based on 
these two lemmas. 

Lemma 3:   *wW  and   *wW . 
Proof: Let us assume that there exists a configuration 
'  which      *wmin'*w   and ' . Thus, 

there exists at least an activity Vi , which   ii d'd   and 
obviously   ii dd  . Based on Lemma 1,  *w   '*w  . 

Since '  minimizes the minimum of the start-time 
dependent costs over the set of possible configurations, 

then    '*w*w  , and we can deduce that   
minimizes the minimum of the start-time dependent costs 
too, W   *w .  

Again assume that the configuration  ''  
maximizes the minimum of the start-time dependent costs 
over the set of possible configurations      *wmax''*w   
and this configuration is not equal to the pessimistic 
configuration, '' . There exist at last an activity Vi , 

which   ii d''d  . Based on Lemma 2,    ''*w*w   and 
since maximizes the minimum of the start-time dependent 

costs, then    ''*w*w   and we can conclude that 
  *wW . 

 
The configuration number (1) and the configuration 

number (8) in Table 1are the optimistic and the 
pessimistic configuration, so based on Lemma 3, the 
bound of the minimum cost is . 

 
4. Determination of the minimum cost in a network 

with fuzzy activity durations 
 
All the elements of the network G are the same as in 

the interval case except for the activity durations, which 
are determined by means of fuzzy numbers , i V. A 

fuzzy number  is a normal convex fuzzy set in the 
space of real number with an upper semi-continuous 

membership function  Error! Reference source not 

found.. A fuzzy set  is convex if and only if its 
membership function is quasiconcave, i.e., it fulfills the 
condition:  for each x, y, z such that 
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Fuzzy number  expresses uncertainty connected 
with the ill-known activity duration modeled by this 
number. It generates a possibility distribution Error! 
Reference source not found. for the sets of values 
containing the unknown activity duration. More formally, 

we say that the assertion of the form “T is ”, where T is 

a variable and  is a fuzzy number, generates the 
possibility distribution of T with respect to the following 
formula (see Error! Reference source not found., Error! 
Reference source not found.): 

,   (7) 
Let  be a configuration of activity durations in the 

network with activity duration times , i V. Thus, 
the (joint) possibility distribution over configurations, 
denoted by , is determined by the following formula: 

,   (8) 
Hence, the possibility distribution describing possible 

values for the minimum of the start-time dependent costs 
is defined in the following way: 

,  (9) 
where  is the minimum of the start-time 

dependent costs of the project network in configuration 
. 
The possibility distributions in formula (9) can be 

determined via the use of -cuts. This method in the 

interval case computes -cuts, , of each  in a 

network with interval durations , 

. So, the possibility distributions, , are 
reconstructed from their -cuts. This approach makes 

sense since intervals  are nested. Such 
an approach for the problems of determining the possible 
values of the latest starting times and floats of activities 
has been proposed by Error! Reference source not 
found.,Error! Reference source not found.. 

Hence, the main difficulty of determining the fuzzy 
minimum of the start-time dependent costs is the interval 
valued case and does not lie on the introduction of fuzzy 
sets. Thus, the fuzzy minimum of the start-time 
dependent costs can be determined by means of the 
proposed lemma (Lemma 3). 

Additionally, Fortin and Dubois Error! Reference 
source not found. have shown that the algorithms in the 
interval-valued case can be adapted to fuzzy intervals 
considering them as crisp intervals of gradual numbers. 
The notions of gradual numbers are introduced by Fortin 
et al. Error! Reference source not found.. 

5. Conclusions 
This research was to introduce and solve the problem 

of project scheduling with irregular starting time costs in 
the network with imprecise activity durations. Imprecise 
data is represented by means of interval or fuzzy numbers. 
Several researchers study a project scheduling problem 
with irregular starting time costs in the network when the 
activities duration times are deterministic and known. We 
have modified the former presented approaches for this 
problem by assuming imprecise activity duration in the 
scheduling of the project. 

In the interval case, the solution space grows 
exponentially when the numbers of activities in the 
network increase. The proposed lemmas determine the 
intervals of the possible values of the minimum of the 
start-time dependent costs in the polynomial time. 

Intuitively, when the activity durations are fuzzy 
numbers, the minimum of the start-time dependent costs 
becomes fuzzy as well. On the basis of Zadeh’s extension 
principle, a natural generalization of the problem in the 
network with fuzzy activity durations is given. The 
proposed approach can be used to solve the problem in 
network with fuzzy activity durations, by the usual 
decomposition of the fuzzy intervals into -cuts. 

The future research will extend the project scheduling 
problem under the objective of maximizing the net 
present value (NPV) of the project in the network with 
imprecise activity durations. 
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