2
o
>
19
op
s
tol
S~
ra

=HGWEE 2000 =AHSSSEI =28 . 2000:44221-229 . AEHUE W

Session PA11.3

APPLICATION OF CONSTRAINT LOGIC PROGRAMMING TO JOB
SEQUENCING

Jesuk Ko and Jaejung Ku

Department of Industrial and
Information Engineering, Kwangju University
592 Chinwol-dong, Nam-gu, Kwangju 502-703, Korea

Abstract In this paper, we show an application of constraint logic programming to the operation scheduling on machines in a
job shop. Constraint logic programming is a new genre of programming technique combining the declarative aspect of logic
programming with the efficiency of constraint manipulation and solving mechanisms. Due to the latter feature, combinatorial
search problems like scheduling may be resolved efficiently. In this study, the jobs that consist of a set of related operations
are supposed to be constrained by precedence and resource availability. We also explore how the constraint solving
mechanisms can be defined over a scheduling domain. Thus the scheduling approach presented here has two benefits: the
flexibility that can be expected from an artificial intelligence tool by simplifying greatly the problem; and the efficiency that
stems from the capability of constraint logic programming to manipulate constraints to prune the search space in an a priori

manner.

1. Introduction

Competitive manufacturing requires the efficient use of
facilities to meet the cost and time requirements of
customers; this is addressed by the scheduling of work
orders within the manufacturing system. Many real-world
manufacturing situations are particularly subject to
difficult scheduling problems because they must deal with
many constraints that must be satisfied for a successful
solution. Most of them belong to the class of
nondeterministic polynomial (NP)-complete problems [6,
7]. Also, as highly combinatorial search problems, they
could be characteristic of the computational complexity.
Much of the complexity comes from the need to attend to
a large and diverse set of objectives, requirements and
preferences that originate from many different sources in
the plant-wide [21].

Logic programming, as exemplified by Prolog,
provides a powerful language for a declarative
formulation of these problems. Notwithstanding, due to
the inefficiency of this search procedure based on the
generate-and-test paradigm, logic programming languages
have been used to solve toy problems so far. On the other
hand constraint logic programming languages like
CLP(R) extend the scope of logic programming to
numeric problem solving. So they provide strong
mechanisms for constraints solving such as consistency
techniques [17], basic arithmetic reasoning, and branch
and bound for optimization [12]. In addition, they allow a
programming style which often significantly reduces the
computational complexity. These techniques have also
been used in some systems to solve combinatorial
problems [4, 5, 16]. The key idea behind constraint
solving is to reduce the domains of variables and hence

the search space to explore at each node of the tree. Thus
they can be used to prune the search space in an a priori
way rather than using them as tests leading to a generate-
and-test procedure. This new paradigm exhibits a data-
driven computation and can be characterized as constrain-
and-generate [13, 14].

In this paper we show an application of such a
constraint logic programming language, CLP(R), to the
job shop scheduling problem. The problem results from
several factors: each job may require a different set of
operations; the job has precedence; and there are resource
constraints on these operations. The rest of paper is
organized as follows. Section 2 presents a general
description of a job shop scheduling problem. Section 3
describes a short overview of constraint logic
programming languages. We then present the job shop
scheduling problem which is solved in a constrain-and-
generate manner. Also, we describe in detail how the
problem can be stated and how constraint solving is
performed. We report, in section 5, the computational
results and their discussion. Section 6 contains the
conclusions.

2. The Scheduling Problem

Consider the following scheduling problem. There are
m machines and a set of n operations, where each
operation is to be run on the specified machine. The
executions of the operations are constrained by
precedence constraints which are described by a directed
acyclic graph G = (O, P), referred to as the operation
graph, where the set of vertices O corresponds to the set of
operations and the set of arcs P -to the precedence
constraints. The operation graph is a weighted graph with

-617 -

+ 5

2
T
S
114
o
J

o
e
o

RFHNEF 2000 EANSSE

U8 =2%. 200044821-222 . ZHUER

Session PA11.3

vertices weighted by operation times op;, i € O, and arcs
weighted by duration of delays dij' For any pair of

operations i, j € O, if (i, j) € P, then operation j can start
execution only dij time units after the completion of

operation {, i.e., ¢; + d;; < a;, where ¢; is the completion -

gy-r
time of operation i, aj is the starting time of operation j.

Also, resource constraints must be considered with respect
to machine availability. The problem is to find a feasible
schedule which satisfies the precedence and resource
constraints such that the makespan, i.e. the time taken to
complete all operations, is minimized. This problem is
known as a job shop scheduling problem which minimizes
the makespan. It belongs to the class of NP-complete
problems [6, 7, 24]. For this class of problems the
complete combinatorial search becomes enormous as the
number of variables increases; the optimal solution
frequently may not be easily found within an acceptable
time limit. To solve this problem there are some heuristics
which permit a near optimal solution. Some examples of
heuristics are genetic algorithms {2], machine learning
[18] simulated annealing {15] and Tabu search [8, 9, 10].

3. Brief Overview of CLP

The history of constraint logic programming can be
traced back to 1987 when Jaffar and Lassez [13]
introduced the basics of the constraint logic programming
scheme, called CLP(X). X has been instantiated with
several so called computation domains, e.g. reals in
CLP(R), rationals in CLP(Q) and integers in CLP(Z). By
definition, constraint logic programming is a
generalization of logic programming where unification,
the basic operation of logic programming, is replaced by
the more general concept of constraint handling (or
solving) over computation domain. The major function of
constraint solving mechanisms is constraint manipulation
and propagation in a constraint domain.

The wunderlying idea behind constraint logic
programming is the use of some mathematical tools to
solve numerical constraints and the use of consistency
checking and constraint manipulation techniques to solve
symbolic constraints. These techniques admit computation
directly over constraint domains such as algebraic
operations, including set intersection, conjunction of
boolean expressions or multiplication of arithmetic
expressions. These computation domains also have certain
relations like set equality, equality between boolean
expressions or equality, disequality and inequality
between arithmetic expressions. In the following section
we will illustrate, as an operational behavior of a CLP(X),
two constraint domains: arithmetic and boolean. Linear
arithmetic expression is one of the motivations behind the
research in combining logic programming with
constraints. Arithmetic expression consists of terms
composed from numbers, variables and the usual
arithmetic operators like +, —, *, /. An arithmetic
constraint is an expression of the form a 6 b where 0 is
one of the following predicates {>, 2, =, <, <, #}. This
computation domain has been applied to combinatorial
problems [4, 5, 16]. In contrast, boolean terms are built
from the truth values (false and true, represented

-618 -

sometimes also by 0 and 1), from variables and from
logical connectives (e.g. v, @, A, neg). The only constraint
between boolean terms is the equality (=). The most
prominent applications of boolean constraints are in the
area of circuit design [20] and in theorem proving in the
domain of propositional calculus [1].

Several types of constraint logic programming
languages are in use today. Jaffar et al. (1992) developed
the CLP(R) system, which was the first constraint logic
programming language to introduce arithmetic constraints
[14]. In the internal mechanism of CLP(R) the decision
procedure of constraint solver is only complete for linear
arithmetic constraints. When a nonlinear constraint is
encountered during computation, then it is suspended and
kept in a delayed constraint set. It is possible that some
constraint in the delayed constraint set, at each operational
step, need no longer be delayed because of new
information. In this case it should be moved from the
delayed constraint set to the collected constraint set and
the usual solvability check made. The underlying
constraint solving algorithm employs both an extended
simplex method for inequality constraints and a Gaussian
elimination algorithm for equality constraints respectively.

There are other interesting constraint logic
programming languages such as PROLOG-III [1], CHIP
{3], and Trilogy [25]; however, these other languages do
not deal with constraints over real numbers. Most of these
programming languages are commercially available and
run on conventional, general-purpose computers because
constraint logic programming hardware is at its infant
stage.

4. A Scheduling Example

In this section, we illustrate by means of an example
how our approach works. Suppose there are four different
parts corresponding to a job which consists of a number of
operation to be scheduled in two machines, mcl and mc2.
We shall also suppose that the operations (OP) that need
to be performed on the specified machine and the
precedence in which they must be executed are as follows:

Joby : OP before OPy

,Joby : OP3 before OP 4 before OP4
Jobs : OPg
Joby : OP before OPg

Assume further that the machines are initially idle and
the setup times are included in the job operation time. The
operation time for various operations on each machine is
given below:

oP# 1 2 3 4 5 6 1 8

[
—
(5]
—
N

MC# 1 2 2
OP time 4 2 3 3 2 3 2 1

Now we will see how to represent the scheduling
problem. The above example can be encoded in CLP(R).
It has the following structure: job{(Op, Duration,
Prev, Res), with the reading : job i-th Op, which has

Akl

(i)

i

o

o

&35/stmFSNES 2000 EHSSHH2US =2F. 200094221-222 . JEHUs W
.3

Session PA11

the previous operation Prev and the operation time
Duration; the operation is performed at the resource
(machine) Res.

schedule ([
job(start,0, [1,11),
job(opl, 4, [start], [mcl]),
job (op2,2, [opll], [mc2]),
job(op3,3, [start], [mc2]),
job(op4,3, [op3], [mcl]),
job(ops5, 2, [op4], [mcl]),
jOb(OP6:3: [Start] ’ [mc2]) 7
joblop7,2, [start], [mcll),
job(op8, 1, [op7], [mc2]),
job(end, 0, [op8,op6,0p5,0p2],[1)]).

Here the time of operation start / end - which can
be regarded as job load / unload - is assumed to be 0. Now
we are in a position to formulate the job precedence
constraints. We introduce variables Op; for each operation

i. Using CLP(R), these constraints can be expressed by
numerical constraints of the following type:

Op;_; + Duration; < Op;

In this way, all of the precedences can be considered. If
operation i-/ has no successive operation, Duration; is

equal to 0. In CLP(R), all the constraints defining the
problem are computed and then feasible solutions
satisfying the constraints are generated. Consequently,
after implementation, we can generate the following 12
inequalities:

start + 4 < opl
opl + 2 £ op2
start + 3 £ op3
op3 + 3 < op4
op4 + 2 < op5
start + 3 < opé
start + 2 £ op7
op7 + 1 £ op8
op8 + 0 < end
opé6 + 0 < end
op5 + 0 £ end
op2 + 0 £ end

The effect of these constraints is twofold: to prune the
search space early and to escape deep backtracking. In
addition, these constraints should be propagated when we
consider the resource constraints (in this case two
machines) together with precedence constraints. One way
to define this characterization of a constraint in CLP(R)
would be the following procedure:

resources (Jobs, ScheduleEnd) : -
machine (Jobs, [],Mch),
find_mch (Mch, Jobs, ScheduleEnd) .

exclusive ([, _,_,_,_,_).
exclusive (J.Js,Op0,Dur0,J0, Jobs,
ScheduleEnd) : -

Op0 + Durl < Opl ; Opl + Dur0 < OpO
exclusive (Js,Op0,Dur0,J0,Jobs,
ScheduleEnd) .

-619 -

In the above program, the predicate resources
selects each machine and assigns each operation to the
specified machine. After choosing each set of operations,
the predicate exclusive puts down the constraints with
regard to operations assigned to the same machine. For
instance, from Machine 1 we obtain the following 12
inequalities:

op7 + 2 S 0op5 ; op5 + 2 £ op7
op7 + 3 < op4 ; op4 + 2 £ op7
opS5 + 4 £ opl ; opl + < ops
op4 + 4 <opl ; opl + 3 £ op4

From Machine 2, we also obtain the following 12
inequalities:

op8 + 3 < op6 ; op6 + 1 < op8
op8 + 3 < op3 ; op3 + 1 £ op8
op6 + 2 £ 0op2 ; op2 + 3 £ opé
op3 + 2 £ o0p2 ; op2 + 3 £ op3

The above 36 constraints define all the constraints of
the present problem. Note that in the actual CLP (R)
program, these constraints are automatically generated at
the same time, and they can be used to drastically shrink
the search space before the schedule is generated.

5. Results and Discussion

This section presents a detailed discussion of the
results obtained in selected scheduling problems. As the
result of computer implementation, we find a first solution
for the job shop scheduling problem with a makespan of
20 after 0.02 second, and we obtain a total of 144 feasible
solutions. Among them, there are 16 optimal solutions
which minimize the makespan. One of the optimal
schedule with a minimum makespan of 11 is found after
0.14 second. All our execution times are given for an IBM
Pentium 133. In this paper, one of the interesting findings
is the flexibility of schedule; in other words, the ability of
scheduling to generate both rough and tight schedules in
the goal state. The former are feasible schedules that just
satisfy all constraints, while the latter are better schedules
that minimize the makespan as well. In CLP(R), as
discussed previously, by using numerical constraints, the
search space can be pruned very early. Also adding more
constraints to the goal state, the schedule domain can be
further reduced.

6. Conclusions

In this paper, we have presented the application of
CLP(R) to a job shop scheduling problem. CLP(R)
permits a declarative representation of the problem to be
executed in an efficient way. The efficiency comes from
the capability to manipulate constraints in order to prune
the search space ahead of the schedule generation. The
example discussed above is much simpler than those
encountered in real-world scheduling problems, and the
range of operations employed here would have to be
widely expanded if a realistic problem were tackled. In

)
o
[
(%
0H
o
fon

BZAANES 2000 EHSSEUE =2 . 200044821-228 . FLHE W

Session PA11.3

addition, owing to its complexity, the constraints to be
satisfied should be increased. In this case, specific
heuristics could be developed and added without any
difficulty. The aim of this paper is to show how the
scheduling problem can be defined in CLP(R). We also
explore how to represent the constraint solving
mechanisms over a scheduling domain. Our current
research efforts are focused on implementing this
approach to real problem and on improving algorithm
performance by better maintaining the constraint solving
over a computational domain.

References

[1] Colmerauer, A., 1990, An introduction to prolog-III.
Communications of the ACM, 33(7), 69-90.

[2] Davis, L., 1985, Job shop scheduling with genetic
algorithms. In J. J. Grefenstette(Ed.), International
Conference on Genetic Algorithms and Their
Applications, Carnegie-Mellon University, Pittsburgh,
PA, 136-140.

[3] Dincbas, M., Hentenryck, P. V., Simonis, H., Aggoun,
A., Graft, T., and Berthier, T., 1988, The constraint logic
programming language CHIP. In Proceedings on the
International Conference on 5th Generation Computer
Systems (FGCS-88), Tokyo, Japan, December.

[4] Dincbas, M., Simonis, H., and Hentenryck, P. V,,
1990, Solving large combinatorial problem in logic
programming. Journal of Logic Programming, 8(1-2), 75-
93.

[5] Fox, M. S., Allen, B. P., Smith, S. F., and Strohm, G.
A., 1983, ISIS: a constraint-directed reasoning approach
to job shop scheduling. Technical Report CMU-RI-TR-
83-8, Carnegie-Mellon University.

[6] Garey, M. R., and Johnson, D. S., 1978, Strong np-
completeness results: motivation, example and
implication. Journal of ACM, 25, 499-508.

[7] Garey, M. R., and Johnson, D. S., 1979, Computers
and intractability: a guide to the theory of NP-
completeness, W. H. Freeman, San Francisco.

[8] Glover, F., 1989, Tabu search - part I, ORSA Journal
of Computing, 1(3), 190-206.

[9] Glover, F., 1990, Tabu search - part 11, ORSA Journal
of Computing, 2(1), 4-32.

[10] Glover, F., and Laguna, M., 1992, Tabu search in
modern heuristic techniques for combinatorial problems,
Blackwell Publishing.

[11] Haralick, R. M., and Elliot, G. L., 1980, Increasing
tree search efficiency for constraint satisfaction problems.
Artificial Intelligence, 14, 263-313.

[12] Hentenryck, P. V., 1989, Constraint satisfaction in
logic programming, MIT Press, London.

[13] Jaffar, J., and Lassez, J-L., 1987, Constraint logic
programming. In Proceeding of the 14th ACM
Symposium on Principles of Programming Languages,
Munich, Germany, January, 111-119.

[14] Jaffar, J., Michaylov, S., Stuckey, P. J., and Yap, R.
H. C., 1992, The CLP(R) language and system. ACM
Transactions on Programming Languages and Systems,
14(3), 339-395.

[15] Johnson, D. S., Aragon, C. R., McGeoch, L. A., and
Schevon, C., 1991, Optimization by simulated annealing:
an experimental evaluation. Journal of Operations
Research, 39, 378-406.

[16] Lauriere, J-L., 1978, A language and a program for
stating and solving combinatorial problems. Artificial
Intelligence, 10(1), 29-127.

[17] Mackworth, A. K., 1977, Consistency in networks of
relations. Al Journal, 8(1), 99-118.

[18] Nakasuka, S., and Yoshida, T., 1992, Dynamic
scheduling system utilising machine learning as a
knowledge acquisition tool. International Journal of
Production Research, 30(2), 411-431.

{19] Pinedo, M., 1995, Scheduling: theory, algorithms
and systems, Prentice Hall, New Jersey.

[20] Simonis, H., and Dincbas, M., 1987, Using logic
programming for fault diagnosis in digital circuits. In
Proceedings German Workshop on Artificial Intelligence
(GWAI-87), Geseke, Germany, 139-148.

[21] Smith, S. F., Fox, M. S., and Ow, P. S., 1986,
Constructing and maintaining detailed production plans:
investigations into the development of knowledge-based
factory scheduling systems. A Magazine, 7(4), 45-61.

[22] Sule, D. R., 1997, Industrial scheduling, PWS
Publishing, Massachusetts.

[23] Sussman, G. J., and Steele, G. L., 1980, Constraints -
a language for expressing almost-hierarchical descriptions.
Al Journal, 14(1).

[24] Ultman, J. D., 1975, NP-complete scheduling
problems. Journal of Computer and System Sciences, 10,
384-393.

[25] Voda, P., 1988, The constraint language Trilogy:
semantics and computations. Technical Report, Complete
Logic Systems, North Vancouver, Canada

- 620 -

