DOI QR코드

DOI QR Code

A Term-based Language for Resource-Constrained Project Scheduling and its Complexity Analysis

  • Kutzner, Arne (Department of Information Systems, Hanyang University) ;
  • Kim, Pok-Son (Department of Mathematics, Kookmin University)
  • Received : 2011.10.06
  • Accepted : 2012.03.10
  • Published : 2012.03.25

Abstract

We define a language $\mathcal{RS}$, a subclass of the scheduling language $\mathcal{RS}V$ (resource constrained project scheduling with variant processes). $\mathcal{RS}$ involves the determination of the starting times for ground activities of a project satisfying precedence and resource constraints, in order to minimize the total project duration. In $\mathcal{RS}$ ground activities and two structural symbols (operators) 'seq' and 'pll' are used to construct activity-terms representing scheduling problems. We consider three different variants for formalizing the $\mathcal{RS}$-scheduling problem, the optimizing variant, the number variant and the decision variant. Using the decision variant we show that the problem $\mathcal{RS}$ is $\mathcal{NP}$-complete. Further we show that the optimizing variant (or number variant) of the $\mathcal{RS}$-problem is computable in polynomial time iff the decision variant is computable in polynomial time.

Keywords

References

  1. J. E. J. Kelly, The Critical Path Method: Resource Planning and Scheduling, Ch 21 in Industrial Scheduling, Muth, J. F. AND Thompson, G. L. (eds.). Englewood Cliffs, NJ: Prentice Hall, 1963.
  2. J. D. Wiest, The Scheduling of Large Projects with Limited Resources. PhD thesis, Carnegie Institute of Technology, 1963.
  3. E. A. Elsayed and N. Z. Nasr, "Heuristics for resource constrained scheduling," International Journal of Production Research, vol. 24, no. 2, pp. 299-310, 1986. https://doi.org/10.1080/00207548608919730
  4. O. Oguz and H. Bala, "A comparative study of computational procedures for the resource constrained project scheduling problem," European Journal of Operational Research, vol. 72, pp. 406-416, 1994. https://doi.org/10.1016/0377-2217(94)90319-0
  5. E. Demeulemeester and W. Herroelen, "New benchmark results for the resource-constrained project scheduling problem," Management Science, vol. 43, no. 11, pp. 1485-1492, 1997. https://doi.org/10.1287/mnsc.43.11.1485
  6. P. Brucker, S. Knust, and O. Schoo, A. Thiele, "A branch and bound algorithm for the resourceconstrained project scheduling problem," European Journal of Operational Research, vol. 107, pp. 272-288, 1998. https://doi.org/10.1016/S0377-2217(97)00335-4
  7. C.-k. Kwon and K.-s. Oh, "Genetic algorithms based on maintaining a diversity of the population for jobshop scheduling problem," Journal of Korean Institute of Intelligent Systems, vol. 11, no. 3, pp. 191-199, 2001.
  8. K. M. Lee and K. M. Lee, "Task allocation and scheduling of multiagent systems with fuzzy task processing times," Journal of Korean Institute of Intelligent Systems, vol. 14, no. 3, pp. 324-329, 2004.
  9. A. Lim, H. Ma, B. Rodrigues, S. Tan, and F. Xiao, "New meta-heuristics for the resource-constrained project scheduling problem," Flexible Services and Manufacturing Journal, pp. 1-26, 2011.
  10. D. C. Paraskevopoulos, C. D. Tarantilis, and G. Ioannou, "Solving project scheduling problems with resource constraints via an event list-based evolutionary algorithm," Expert Systems with Applications, vol. 39, no. 4, pp. 3983-3994, 2012. https://doi.org/10.1016/j.eswa.2011.09.062
  11. E. Demeulemeester and W. Herroelen, "A branchand- bound procedure for the multiple resourceconstrained project scheduling problem," Management Science, vol. 38, no. 12, pp. 1803-1818, 1992. https://doi.org/10.1287/mnsc.38.12.1803
  12. A. Mingozzi, V. Maniezzo, and L. Ricciardelli, S. Bianco, "An exact algorithm for project scheduling with resource constraints based on a new mathematical formulation," Management Science, vol. 44, no. 5, pp. 714-729, 1998. https://doi.org/10.1287/mnsc.44.5.714
  13. L. Bianco and M. Caramia, "Minimizing the completion time of a project under resource constraints and feeding precedence relations: A lagrangian relaxation based lower bound," 4OR, vol. 9, no. 4, pp. 371-389, 2011. https://doi.org/10.1007/s10288-011-0168-6
  14. L. Bianco and M. Caramia, "An exact algorithm to minimize the makespan in project scheduling with scarce resources and generalized precedence relations," European Journal of Operational Research, vol. 219, no. 1, pp. 73-85, 2012. https://doi.org/10.1016/j.ejor.2011.12.019
  15. P. S. Kim and M. Schmidt-Schauss, "A term-based approach to project scheduling," ICCS01, Lecture Notes in Artificial Intelligence Series 2120, p. 304 ff., Springer-Verlag, 2001.
  16. M. Schmidt-Schauss and G. Smolka, "Attributive concept descriptions with unions and complements," Tech. Rep. SEKI Report SR-88-21, FB Informatik, Universitat Kaiserslautern, D-6750, Germany, 1988.
  17. F. M. Donini, M. Lenzerini, D. Nardi, and W. Nutt, "The complexity of concept languages," Information and Computation, vol. 134, no. 1, pp. 1-58, 1997. https://doi.org/10.1006/inco.1997.2625
  18. J. K. Lenstra and A. H. G. Rinnooy Kan, "Complexity of scheduling under precedence constraints," Operations Research, vol. 26, pp. 22-35, 1978. https://doi.org/10.1287/opre.26.1.22
  19. C. Posthoff and K. Schultz, Grundkurs Theoretische Informatik. Stuttgart; Leipzig: B. G. Teubner Verlagsgesellschaft, 1992.
  20. E. Borger, Berechenbarkeit Komplexitat Logik. Vieweg, 1992.
  21. J. C. Martin, Introduction to Languages and the Theory of Computation. McGraw-Hill Inc., 1991.
  22. J. E. Hopcroft and J. D. Ullman, Einf¨urung in die Automatentheorie, Formale Sprachen und Komplexitatstheorie. Addison-Wesley, 1988.
  23. I. Wegener, Theoretische Informatik. Stuttgart: B. G. Teubner, 1993.
  24. I. Wegener, Kompendium Theoretische Informatikeine Ideensammlung. Stuttgart: B. G. Teubner, 1996.