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Abstract

We define a language RS , a subclass of the scheduling language RSV (resource constrained project scheduling with
variant processes). RS involves the determination of the starting times for ground activities of a project satisfying
precedence and resource constraints, in order to minimize the total project duration. In RS ground activities and two
structural symbols (operators) ‘seq’ and ‘pll’ are used to construct activity-terms representing scheduling problems.
We consider three different variants for formalizing the RS-scheduling problem, the optimizing variant, the number
variant and the decision variant. Using the decision variant we show that the problem RS is NP-complete. Further we
show that the optimizing variant (or number variant) of theRS-problem is computable in polynomial time iff the decision
variant is computable in polynomial time.
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1. Introduction

Ever since the introduction of the pioneer works of
Kelly [1] and Wiest [2] much has been reported about
resource-constrained scheduling problems [3, 4, 5, 6, 7, 8].
Further, many various approaches for solving resource-
constrained project scheduling (RCPS) have been intro-
duced. These are based on either heuristic algorithms
[3, 4, 9, 10] or exact algorithms [11, 12, 13, 14]. Kim
and Schmidt-Schauss suggested a new approach for rep-
resenting and solving a general class of non-preemptive
resource-constrained project scheduling problems in [15].
The new approach is to represent scheduling problems with
variant processes as descriptions (activity terms) in a logic-
based terminological language called RSV (resource con-
strained project scheduling with variant processes). The
language RSV involves the determination of the starting
times for the activities of a project satisfying precedence
and resource constraints in view of the possibility of gen-
eralization to “OR” activities in order to minimize the to-
tal project duration (See [15]). The vocabulary of RSV
consists of a set of atomic activities {Pi(r(i), d(i))|i =
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1, · · · , n(n ∈ IN), r(i) ∈ R, d(i) ∈ IN}, also called
ground activities, and three structural symbols (operators)
‘seq’, ‘xor’ and ‘pll’, where R is a finite set of resources.
Each ground activity consists of a name Pi and two con-
stants r(i) and d(i), where r(i) and d(i) denote Pi’s as-
sociated resource and duration respectively. r(i) and d(i)
are needed for satisfying the ground activity Pi. The op-
erators ‘seq’, ‘pll’ and ‘xor’ are used to construct expres-
sions (activity-terms) and to specify the sequential process-
ing of activity-terms, the possibility of parallel processing
of activity-terms and the possibility of selecting an activity-
term among several different alternative activity-terms re-
spectively.
A model-theoretic semantics of activity-terms in RSV is
given by an interpretation similar to that of description log-
ics [16, 17, 15]. The use of semantic methods from de-
scription logics [16, 17, 15] is the key for understanding
the meaning of activity terms. Description Logics belong
to a research field in artificial intelligence and character-
istics of them are a term language for concepts and other
notions, a clean denotational semantics, and specific cal-
culi (like subsumption) based on the semantics.
The most proposed methods for solving scheduling prob-
lems are based on integer programming. In that approach it
is generally difficult to read the flow structure and the con-
tent of a scheduling problem (for example, which activity
requires what resource). This motivated to use a term lan-
guage RSV for activity-terms and to model its semantics
in a way best suited to the specific time and resource con-
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straints.
Further a calculus called RSV-calculus and a diagram-
based algorithm denoted by ARSV for solving the RSV-
scheduling problem have been introduced (See [15]).

In this paper we define a subclass of the languageRSV
that we call RS . In RS only two operators ‘seq’ and ‘pll’
are used to construct activity-terms. The purpose of this
paper is to investigate which time complexity is needed for
solving RS-problems. Although the NP-completeness of
the RCPS-problem was already shown in [18], the proof
of the NP-completeness of such a problem-class as RS
is still unknown. We will consider three different vari-
ants for formalizing the RS-scheduling problem. These
are the optimizing variant, the number variant and the de-
cision variant of the RS-problem. By using the decision
variant we show that the problem RS belongs to the prob-
lem class NP . Further, we will show that the well-known
NP-complete knapsack problem is polynomial reducible
to the problem RS . So, we can conclude the problem RS
is NP-complete. In addition, we will show that the opti-
mizing variant (or number variant) of the RS-problem is
computable in polynomial time iff the decision variant is
computable in polynomial time.

This paper is structured as follows. First, the language
RS is defined in section 2. Then a calculus for the language
RS is defined in section 3. The optimal solution algorithm
is given in section 4. The time complexity of the problem
RS is investigated in section 5. We will finish with some
conclusion.

2. Formal Definition

2.1 The Syntax of the LanguageRS
The term-based scheduling language RS that is a sub-

class ofRSV ([15]) is defined as follows:

Definition 2.1. The vocabulary of RS consists of a set
of atomic activities {Pi(r(i), d(i))|i = 1, · · · , n(n ∈
IN), r(i) ∈ R, d(i) ∈ IN}, also called ground activities, and
two structural symbols (operators) ‘seq’ and ‘pll’, whereR
is a finite set of resources. Each ground activity consists of
a name Pi and two constants r(i) and d(i), where r(i) and
d(i) denote Pi’s associated resource and duration respec-
tively. r(i) and d(i) are needed for satisfying the ground
activity Pi.
The activity terms of RS are inductively defined as fol-
lows:

1. Each ground activity is an activity-term.

2. If A1, A2, · · · , Ak are activity-terms, then

(seqA1, A2, · · · , Ak),
(pll , A2, · · · , Ak),

are activity-terms.

The operators ‘seq’ and ‘pll’ are used to construct expres-
sions (activity-terms) and to specify the sequential process-
ing of activity-terms and the possibility of parallel process-
ing of activity-terms respectively.

2.2 Schedules

Active schedules for RS-activity-terms can be defined
as follows:

For an activity term A let g(A) = {A1, · · · , An} be
the set consisting of all ground activities occurring in A.
The activity-term A defines a strict partial order <A on
{A1, · · · , An}, using the operator ‘seq’. It is generated
on the set S of subterms of A as follows:

- (seqB1, · · · , Bm) ∈ S ∧ i < j ⇒ Bi <A Bj .

- Bi, Bj ∈ S ∧ Bi <A Bj ⇒ B′i <A B′j for
every subterm B′l of Bl, l = i, j.

Definition 2.2. Let A be an activity term and g(A) =
{A1, · · · , An}. An active schedule forA is a set of starting
times of ground activities {tAi ∈ IN|Ai ∈ g(A)} such that:

• The precedence constraints are satisfied: tAh
+

d(Ah) ≤ tAi
for each Ai and each immediate pre-

decessor Ah with Ah <A Ai ,

• The resource constraints are satisfied: tAm ≥ tAl
+

d(Al) or tAl
≥ tAm

+ d(Am) for all Al, Am ∈ g(A)
with r(Al) = r(Am)(l 6= m) and

• No ground activity can be started earlier without
changing other start times: There does not exist an-
other set {t′Ai

|Ai ∈ g(A)} with a ground activity
Aj , which satisfies the precedence and resource con-
straints, such that tAi = t′Ai

for all i 6= j and
t′Aj

< tAj .

The total project duration (project makespan) of an ac-
tive schedule is the duration from the first starting time
mini(tAi

) to the stopping time maxi(tAi
+ d(Ai)).

2.3 The Semantics of the LanguageRS
Definition 2.3. The model-theoretic semantics of activity-
terms inRS is given by an interpretation I which consists
of the set D (the domain of I) and a function ·I (the in-
terpretation function of I). The set D consists of all active
schedules derived from activity-terms in RS . The inter-
pretation function ·I assigns to every activity-term A some
subset of D that consists of all active schedules derived
from A.
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2.4 The Scheduling ProblemRS
The objective is minimizing the project makespan. We

call active schedules which have minimal project makespan
optimal active schedules. So, we define the scheduling
problemRS as follows:

For a given activity-term of RS an optimal active
schedule has to be determined.

3. A Calculus for the Scheduling Language
RS

Two activity-terms are semantically equivalent, if the
interpretations of the two activity-terms are identical. We
take a part of the RSV-calculus in [15] that we call RS-
calculus and it may be used to transform a RS-expression
A into a semantically equivalentRS-expression B.

Definition 3.1. TheRS-calculus is defined as follows:

If A1, A2, · · · , Ak, B1, · · · , Bl, Ak+2, · · · , An are
activity-terms, the calculus has the following 2 associative
rules. Each associative rule describes that a subexpression
combined by ‘seq’ or ‘pll’ which is an argument of the
operator ‘seq’ or ‘pll’ respectively may be flattened:

(seqA1, A2, · · · , Ak, (seqB1, · · · , Bl), Ak+2, · · · , An)

(seqA1, A2, · · · , Ak, B1, · · · , Bl, Ak+2, · · · , An)
(1)

(pllA1, A2, · · · , Ak, (pllB1, · · · , Bl), Ak+2, · · · , An)

(pllA1, A2, · · · , Ak, B1, · · · , Bl, Ak+2, · · · , An)
(2)

A rule in the form
A

B

is “correct” iff the interpretation of the upper expression
A and the lower expression B are identical ( AI = BI).
The sets of all active schedules derived from the upper and
lower expression of the rule (1) are obviously identical, be-
cause both expressions describe the same ordering of the
activity-terms A1, · · · , Ak, B1, · · · , Bl, Ak+2, · · · , An−1
and An. Otherwise the expression transformation makes
no change. Therefore, the following equation holds:

(seqA1, A2, · · · , Ak, (seqB1, B2, · · · , Bl), Ak+2,
Ak+3, · · · , An)

I

= (seqA1, A2, · · · , Ak, B1, B2, · · · , Bl, Ak+2,
Ak+3, · · · , An)

I

Hence the rule Rule (1) is correct. In a similar way we can
show the rule (2) is correct as well.

t6

D

P7(d, 1) P8(b, 2)

P6(a, 2)

P4(b, 1) P5(a, 1)

P2(b, 2)

P1(a, 1)
P3(c, 2)

Figure 1: RS-diagram with the scan-line on the stopping
time tSL = 0

4. Solution Algorithm of theRS-Problem

It is known that for any activity-term A the set of active
schedules derived from A is finite. All active schedules for
any activity-term ofRS can be calculated by the algorithm
ARSV introduced in [15]. In this section we describe the
algorithmARSV briefly. Description ofARSV in detail can
be found in [15]. ARSV is based on a new diagram-based
method for representing activity-terms graphically. In this
section we call the diagrams representing activity-terms in
RS RS-diagrams. Using RS-diagrams explicit genera-
tion of all nonredundant active schedules for any activity-
term can be illustrated graphically.
A RS-diagram has a time axis and a scan-line. The op-
erator ‘seq’ is specified using a continuous line while the
operator ‘pll’ is specified using a broken line. The follow-
ing example shows the representation of an activity-term
by aRS-diagram.

Example 4.1. The RS-diagram of Figure 1 represents the
following activity-term

pll (seq(pllP1(a, 1), P2(b, 2)), P3(c, 2)),
(seqP4(b, 1), P5(a, 1)),
P6(a, 2),
seqP7(d, 1), P8(b, 2))

In a RS-diagram each ground activity has a left and
a right end point (a start and end time). The left and
right end point of any ground activity P (r, t) denoted by
LE(P (r, t)) and RE(P (r, t)) are referred to as stopping
times of the scan-line. (D, t) with t ≥ 0 denotes the scan-
line is found at the stopping time tSL = t in the RS-
diagram D. The scan-line is used for determining and re-
solving resource conflicts. Instead of a continuous mov-
ing, the scan-line jumps from a stopping time into the next
right stopping time while determining and then resolving
resource conflicts.

In the beginning the scan-line is found at the time
tSL = 0 and the diagram is empty. Let A be given as
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any input activity-term.
Step 1: Attaching start ground activities to the scan-
line: First all start ground activities of A which have no
predecessors in A are attached to the scan-line. “Attach-
ing a ground activity P to the scan-line” means that P is
placed in the diagram so that the time at which the scan-
line is found is assigned to P as its start time.
Step 2: Moving the scan-line: The scan-line jumps to the
next stopping time.
Step 3: Determining and resolving resource conflicts;
Freezing all definitely placed ground activities: In aRS-
diagram (D, tSL) with tSL > 0 a ground activity P (r, t) is
called a (tSL-time) scan-line activity iffLE(P (r, t)) < tSL

and RE(P (r, t)) ≥ tSL hold. A scan-line activity P (r, t)
with RE(P (r, t)) = tSL is called a (tSL-time) direct scan-
line activity. If a direct scan-line activity P (r, t) is a unique
scan-line activity requiring the resource r, the begin and
end time of such an activity P (r, t) has been definitely de-
termined. Therefore all such activities are frozen.
If in a RS-diagram (D, tSL) with tSL > 0 ground activ-
ities P1(r, t1), P2(r, t2), · · · andPn(r, tn)(n ≥ 2) are all
(tSL-time) scan-line activities requiring the same resource
r and there exists an activity Pi(r, ti), i ∈ {2, 3, · · · , n}
with ti = tSL, P1(r, t1), P2(r, t2), · · · and Pn(r, tn) (n ≥
2) are called to be involved in a (tSL, r)-resource conflict
or tSL-time resource conflict. If there are tSL-time scan-
line activities involved in a (tSL, r)-resource conflict, the
resource conflict is resolved while selecting only one activ-
ity and all the other activities are moved behind the selected
activity. In this case the begin and end time of this selected
activity are definitely determined. In order to mark that a
selected activity must not be moved, it is frozen.
At any stopping time tSL, several different tSL-time re-
source conflicts can simultaneously occur. In this case ex-
actly one (tSL, r)-conflict activity for each tSL-time con-
flict resource r is selected in order to freeze them. There
exist several different combinational possibilities for se-
lecting activities. Such a combination is called a conflict
combination. In order to pursue all conflict combinations,
the RS-diagram (D, tSL) is multiplied by the number of
the existing conflict combinations. Every conflict combi-
nation is assigned to one of the multiplied diagrams respec-
tively. In every diagram, the selected activities are frozen
and all the other tSL-time conflict activities are moved be-
hind each corresponding frozen activity respectively. We
proceed then with the next step 4 for every diagram.
Step 4: Deleting all tSL-time direct scan-line activities
from the activity-termA: If in the diagram (D, tSL) tSL-
time direct scan-line activities exist, they surely have been
frozen in the last step 3. Now all tSL-time direct scan-line
activities in (D, tSL) are deleted from A. So A may be-
come smaller.
Step 5: Attaching further ground activities to the scan-
line: Further ground activities from the activity-term A
which can be attached to the scan-line are determined in

order to place them. If in diagram (D, tSL) a scan-line ac-
tivity P (r, t) with RE(P (r, t) > tSL has been frozen, the
resource r is being blocked until the time RE(P (r, t)). So,
all further ground activities requiring the tSL-time blocked
resource r which have not yet been placed in the diagram
and have no predecessor in A must wait until the scan-line
has jumped to the time RE(P (r, t)). For (D, tSL)(tSL >
0) with an activity-term A, a ground activity P (r, t) of A
can be attached to the scan-line iff

1. P isn’t from the diagram (D, tSL),

2. in (D, tSL) there exists no frozen activity Q(r, l) for
which LE(Q) < tSL and RE(Q) > tSL hold.

3. in A P has no predecessor.

Furthermore the steps 2, 3, 4 and 5 are recursively applied
until all ground activities have been placed in the diagram
and all activities in the diagram have been frozen so that
A becomes empty and an active schedule is completed.
Among all computed schedules, those that have the min-
imal project makespan are delivered as the optimal sched-
ules for A.

We already presented a correctness proof for this algo-
rithm in [15].

5. Complexity

In this section we investigate which time complexity is
needed for solving the RS-problem. The investigation is
based on the computation model “Turing machine”. The
mathematical computation model “Turing machine” is of-
ten used in the field of complexity theory because this
model allows to imagine the time duration for computation
easily and intuitively [19, 20, 21, 22, 23].

5.1 NP-completeness of theRS-Problem.

A NP-complete problem is considered as one of the
“hardest” problems in the class NP . The knapsack prob-
lem (KP , for short) is one of the well knownNP-complete
problems. By showing the polynomial reducibility from
the knapsack problem KP to the problem RS we prove
the NP-completeness of the problemRS.
In NP-completeness theory (complexity theory) decision
variants of problems are used to analyze the time complex-
ity of problems.

The RS-Decision Problem
LetA be any expression inRS. In the following we denote
the total project duration of an active schedule PA derived
from A by lt(PA).

Let any expression A ∈RS and a (minimal) time limit
t ∈ IN be given. TheRS-decision problem is:
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• Does there exist an optimal and active schedule for A
having the total project duration less than or equal to
t ?

The LanguageRS∗
The RS-decision problem is to decide whether for a given
expression A ∈ RS and for a given time limit t ∈ IN an
optimal and active schedule exists whose total duration is
less than or equal to the time limit t.
The language RS∗ consists of all pairs (A, t) with A ∈
RS and t ∈ IN such that for A there exists an optimal and
active schedule PA with lt(PA)≤ t.

Knapsack Problem:
The knapsack problem is defined as follows:
Let k1, k2, · · · , kn, r, n ∈ IN be given. The knapsack prob-
lem is:

• Does there exist an index set I ⊂ {1, 2, · · · , n} such
that

∑
i∈I ki = r ?

The Language KP
The language KP consists of all triples
((k1, k2, · · · , kn), r, n) such that there exists an in-
dex set I ⊂ {1, 2, · · · , n} satisfying

∑
i∈I ki = r i.e.

KP = {((k1, k2, · · · , kn), r, n) | ∃I ⊂ {1, 2, · · · , n} such
that

∑
i∈I ki = r}.

Now we show that RS∗ can be recognized by a poly-
nomial time nondeterministic algorithm, i. e. RS∗ ∈ NP .
Further we show that the language KP is polynomial re-
ducible toRS∗ (KP ≤ RS∗). By these both properties, it
follows that theRS-problem is NP-complete.

Theorem 5.1. RS∗ is in NP .

Proof. A polynomial time nondeterministic Turing ma-
chine (abbreviated NT ) accepting the strings in RS pre-
cisely can be constructed as follows: NT checks whether
the input describes the correct encoding of a pair (A, t)
with A ∈ RS and t ∈ IN. If the input is improper, NT
stops and rejects it. Otherwise NT guesses an optimal ac-
tive schedule for A in nondeterministic polynomial time.
The nondeterministic guessing of an active schedule here
corresponds to the optimal selection of a conflict combina-
tion each time in resolving resource conflicts similar to the
algorithmARSV (see section 4). InRS-diagram computa-
tion of an active schedule for an activity-term ofRS is cal-
culated assigning a starting time to each ground activity of
the activity-term. Therefore, it is obvious that guessing the
optimal active schedule takes polynomial time. Afterwards
NT calculates the minimal total duration of the guessed
active schedule. If the total duration is less than or equal
to t, then NT proceeds to the accepting state and halts; so
the input string (A, t) has been accepted. If not, the input
string (A, t) is rejected.
If (A, t) is in RS∗, NT halts in an accepting state, since
RS∗ consists of all pairs (A, t) with A ∈ RS and t ∈ IN

1. active schedule2. active schedule n. active schedule
pll

Figure 2: Nondeterminism with regard to the operator ‘pll’

such that for the expression A there exists an active sched-
ule Paij

with lt(Paij
)≤ t. If (A, t) is rejected, each opti-

mal active schedule forA takes a total duration greater than
t.

Remark: The nondeterministic Turing machine NT
constructed in theorem 5.1 can be considered as a variation
of the algorithm ARSV . NT is a nondeterministic Turing
machine while the algorithm ARSV corresponds to a de-
terministic Turing machine. For a given input expression
A ∈ RS, NT guesses an optimal active schedule while
ARSV computes all nonredundant active schedules for an
expression. Then NT determines the corresponding opti-
mal project duration in oder to compare the value with the
time limit t ∈ IN.
Whenever in computation of the algorithm resource con-
flicts occur, theRS-diagram is multiplied. This multiplica-
tion may be grasped as nondeterminism in NT . Whenever
NT meets an expression combined by ‘pll’, NT guesses
an optimal schedule. If for an expression combined by ‘pll’
n different active schedules would exist, at least one of the
n schedules is surely an optimal schedule NT can guess.
The figure 2 clarifies the nondeterminism with regard to the
operator ‘pll’:

Theorem 5.2. KP ≤ RS∗

Proof. Let a and b be two different resources and K =∑n
i=1 ki. For each weight ki, i = 1, 2, · · · , n we take a

ground activity Pi(a, ki), i = 1, 2, · · · , n. We show the
polynomial time reducibility KP ≤ RS∗ with the follow-
ing assignment:
((k1, k2, · · · , kn), r, n)

7−→f

((pll P1(a, k1), P2(a, k2), · · · , Pn(a, kn),
(seqQ1(b, r), Q2(a, 1), Q3(b,K − r))),K + 1)

Now we have to show that ((k1, k2, · · · , kn), r, n) ∈
KP iff the assigned expression
((pll P1(a, k1), P2(a, k2), · · · , Pn(a, kn),
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(seqQ1(b, r), Q2(a, 1), Q3(b,K−r))),K+1) is inRS∗.
Assume ((k1, k2, · · · , kn), r, n) ∈ KP . Then there exists
an index set I ⊂ {1, 2, · · · , n} satisfying

∑
i∈I ki = r.

Therefore, while all Pis, i ∈ I are carried out one by one,
Q1(b, r) can be carried out in parallel with these. They
need time duration r for their complete processing. After-
wards Q2(a, 1) can be carried out. Because of a resource
conflict Q2(a, 1) can be carried out with no one of Pjs,
j ∈ ({1, 2, · · · , n} − I) simultaneously. After processing
Q2, while all Pjs, j ∈ ({1, 2, · · · , n} − I) are carried out
one by one, Q3(b,K − r) can be carried out simultane-
ously with these. Since

∑
j∈({1,2,··· ,n}−I) kj = K − r,

they exactly need time duration K − r. So we have an
active schedule with the overall time duration K + 1.
Further, this active schedule is optimal, since all sched-
ules need the overall time duration K + 1 at least.
Hence it holds ((pll P1(a, k1), P2(a, k2), · · · , Pn(a, kn),
(seqQ1(b, r), Q2(a, 1), Q3(b,K − r))),K + 1)∈RS∗.
Conversely, assume ((k1, k2, · · · , kn), r, n) /∈ KP . Then
there does not exist an index set I ⊂ {1, 2, · · · , n} such
that

∑
i∈I ki = r. Without loss of generality, we as-

sume while P1, P2 · · · and Ps are carried out one by one,
Q1(b, r) is executed in parallel with these. Then it holds
either k1 + k2 + · · · ks < r or k1 + k2 + · · · ks > r. If
k1+k2+· · · ks < r, then ks+1+· · ·+kn > K−r. Q1 and
Q2 must be sequentially processed. Further Q2, Ps+1 · · ·
and Pn require the same resource a. Therefore all these
have to be sequentially processed. So, they need a time du-
ration greater than K − r + 1. Hence all active schedules
for (pll P1(a, k1), P2(a, k2), · · · , Pn(a, kn),(seqQ1(b, r),
Q2(a, 1), Q(b,K − r))) need a total duration greater than
K + 1. In case of k1 + k2 + · · · ks > r: P1, P2 · · · ,Ps

and Q2 have to be sequentially processed and these need a
time duration greater than r + 1. Thus all active sched-
ules need a total duration greater than K + 1 as well.
Hence we have ((pll P1(a, k1), P2(a, k2), · · · , Pn(a, kn),
(seqQ1(b, r), Q2(a, 1), Q3(b,K − r))),K + 1)/∈RS∗.
Trivially, it holds that f ∈ π i. e. the time complexity
needed for forming the assigned expressions is O(n).

The following examples clarify the polynomial time as-
signment and the NP-completeness ofRS∗regarding the-
orem 5.2.

Example 5.3. Let the instance ((1, 2, 3, 3, 5), 8, 5) ∈ KP
be given. Then the assigned expression is

((pll P1(a, 1), P2(a, 2), P3(a, 3), P4(a, 3), P5(a, 5),
(seqQ1(b, 8), Q2(a, 1), Q3(b, 6))), 15)

For the aboveRS-expression we can get an optimal active
schedule with the makespan 15 as follows: First P3 and P5

are carried out one by one and Q1 is carried out in parallel
with P3 and P5. Subsequently Q2 is executed. After ex-
ecuting Q2, P1, P2 and P4 are carried out one by one and
Q3 is performed in parallel with them. So, the expression
is inRS∗.

Let the instance ((4, 5, 6, 7), 3, 4) /∈ KP be given.
Then the assigned expression is

((pll P1(a, 4), P2(a, 5), P3(a, 6), P4(a, 7),
(seqQ1(b, 3), Q2(a, 1), Q3(b, 19))), 23)

P1, P2 · · · ,P4 and Q2 require the same resource a.
So, they can not be processed simultaneously. We can
consider the following optimal schedule. First P1 and
Q1 are processed simultaneously and need the time
duration 4. Afterward Q2is processed. Then P2, P3

and P4 are carried out in parallel with Q3. This sched-
ule needs the time duration 24. So we can conclude
that for the above RS-expression all active schedules
require the total project duration 24 at least. Hence
((pll P1(a, 4), P2(a, 5), P3(a, 6), P4(a, 7), (seqQ1(b, 3),
Q2(a, 1), Q3(b, 19))), 23) /∈ RS∗.

Trivially, the complexity of the assignment from KP
toRS∗ is O(n).

By Th. 5.1 and 5.2 we have the following:

Corollary 5.4. The problemRS is NP-complete

5.2 Three Variants of theRS-Problem
Depending on the output computed, three different

variants of the RS-scheduling problem may be distin-
guished. These three different variants are the optimiz-
ing variant, the number variant and the decision variant
[23, 24]. We have already introduced the decision vari-
ant in section 5.1. In section 2 we have defined the RS-
scheduling problem as the optimizing variant. So, the op-
timizing and number variant are described as follows: Let
an expression A ∈ RS be given. The optimizing variant of
theRS-problem is

• Compute an optimal active schedule for A.

The number variant of theRS-problem is

• Compute the optimal total project duration for A.

5.3 NP-completeness of the Optimizing and
Number Variant

The NP-completeness theory is a valuation model
for time complexity of decision problems. Correspond-
ingly we used the decision variant to prove the NP-
completeness of the RS-scheduling problem in section
5.1. For many practical optimizing problems [23, 24] it is
enough to deal with the decision variant because all three
variants are equivalent regarding the complexity i. e. the
optimizing variant (or number variant) is computable in
polynomial time if and only if the decision variant is com-
putable in polynomial time. Now we show this holds for
theRS-problem as well.
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t

D

P1(r, t1) · · ·

P2(r, t2)

...

· · ·

· · ·

...

· · ·Pi(r, ti)

Pn(r, tn)

h1(= ti)

Figure 3: Computation of an optimal active schedule -RS-
diagram for t(H) = h1

Theorem 5.5. The number variant of the RS-problem is
efficiently computable if and only if the decision variant is
efficiently computable.

Proof. Assume the number variant is efficiently com-
putable. To solve the decision variant it is enough to check
if the optimal total project duration given by the number
variant is less than or equal to the time limit. Hence the
decision variant is efficiently computable as well.

Conversely, the decision variant is efficiently com-
putable. Let A be any RS-expression and s be the sum
of the durations of all ground activities of A. Obviously
the optimal total project duration can not be greater than
s. So, first we take

⌊
s
2

⌋
as the minimal time limit and can

get the answer “yes” or “no” using the decision variant. If
we have the answer “yes”, we take

⌊
s
4

⌋
as the time limit

once again. If “no”, we take
⌊
3s
4

⌋
as the time limit, and

so on. We need log s iterations at most to calculate the ex-
act optimal total project duration. So the number variant is
efficiently computable.

Theorem 5.6. The optimizing variant of the RS-problem
is efficiently computable if and only if the number variant
is efficiently computable.

Proof. Suppose the optimizing variant is efficiently com-
putable. Then the number variant is efficiently computable
as well, since the total project duration of an optimal sched-
ule can be calculated efficiently.

Conversely, let G be an algorithm that solves the num-
ber variant efficiently. Let A be any input activity (a RS-
expression). First, we apply G to A to get the optimal
total project duration α. Now, we begin deriving an op-
timal active schedule from A. Since it is enough to fo-
cus on pll-subexpressions and we can apply the calculus
2 (see section 3) to flatten pll-expressions, we assume A

t

D

P1(r, t1) · · ·

P2(r, t2)

...

· · ·

· · ·

...

· · ·

Pn(r, tn)

h1(= ti)

Pd(eu, t1)

Pi(r, ti)Pd(eu, t1)

Pd(eu, t1)

Figure 4: Computation of an optimal active schedule -
Checking P1(r, t1)

corresponds to a flattened pll-expression. To assign a start-
ing time to each ground activity of A, we use the RS-
diagram. First A is represented as a RS-diagram with
stopping time t(H) = 0 of its scan-line. The scan line
jumps to the next stopping time H with t(H) = h1. For
each h1-time conflict resource, in order to find out which
ground activity involved to the resource conflict has to be
placed first, we check ground activities one by one as fol-
lows: Let P1(r, t1), P2(r, t2), P3(r, t3), · · · , Pn(r, tn) be
all h1-time scan-line activities involved in (h1, r)-resource
conflict (see figure 3). We select the activity P1 and “shift”
all the remaining activities behind the selected activity P1.
We replace the empty places after shifting by a pseudo
(dummy) ground activity Pd(eu, t1) (see figure 4). A
pseudo (dummy) ground activity Pd(eu, t1) is such an ac-
tivity that doesn’t generate any resource conflict. Now we
compute the optimal project duration for this changed ac-
tivity term using G. Then we compare this value to α. If
there is any increase, then P1 is not in the right place. For
at least one ground activity there must exist a successful
check. For all other h1-time conflict resources, the ground
activities to be placed first are determined in the same way.
Afterwards the scan-line jumps to the next stopping timeH
with t(H) = h2. If there exist h2-time conflict resources,
the ground activities to be placed first are determined in the
same way as before. By recursively applying this method,
all resource conflicts can be resolved. Further the result-
ing conflict-free schedule is an optimal schedule, since its
optimal project duration corresponds with α. The number
of calls of the algorithm G is equal to O(k2) where k is
the number of all ground activities in A. With the efficient
number variant the optimizing variant is efficiently com-
putable as well.
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6. Conclusion

We introduced a term-based scheduling language RS
that represents resource constrained project scheduling
problems. Further we investigated the time complexity of
the language RS. We could show that the problem RS is
NP-complete. Further we could show the three variants
of theRS-problem, i.e. the optimizing variant, the number
variant and the decision variant, are equivalent regarding
their time complexity.
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