A Model for Integration of Process Planning and Scheduling with Outsourcing in Manufacturing Supply Chain ${ }^{\dagger}$

Chan-Seok Jeong - Young-Hae Lee - Chiung Moon
Department of Industrial Engineering, Hanyang University

생산공급사슬에서의 아웃소싱을 고려한 공정계획 및 일정계획의 통합을 위한 모델

정찬셕 - 이영해 - 문치웅

Abstract

An integrated process planning and scheduling model considering outsourcing in manufacturing supply chain is proposed in this paper. The process planning and scheduling considering outsourcing are actually interrelated and should be solved simultaneously. The proposed model considers the alternative process plans for job types, precedence constraints of job operations, due date of production, transportation time and production information for outsourcing. The integrated states include:(1) Operations sequencing,(2) Machine selection,(3) Scheduling with outsourcing under the due date. To solve the model, a heuristic approach based on genetic algorithm(GA) is developed. The proposed approach minimizes the makespan considering outsourcing and shows the best operation-sequences and schedule of all jobs.

1. Introduction

A supply chain may be defined as an integrated process wherein a number of various business entities(i.e., suppliers, manufacturers, distributors, and retailers) work together in an effort to:(1) acquire taw materials, (2) convert these raw materials into specified final products, and (3) deliver these final products to retailers(Beamon 1998). For years, researchers have mainly investigated the various processes within manufacturing supply chain individually. Recently, however, there has been increasing attention placed on the integrated model of manufacturing supply chain planning. Process planning and scheduling are maybe the most important functions in a manufacturing system. Process planning determines how a job will be manufactured and acts as a bridge between design and manufacturing and scheduling which considers alternative machine is sometimes known as inte-
grated process planning and scheduling(Palmer 1996). Since the alternative machines considering outsourcing are available to process each operation, the scheduling problem becomes more complex.
In practice, any job assigned to a manufacturing system can be scheduled for more than one machine and may have a flexible process sequence. If some jobs have certain operation-sequences, they should be considered for the integrated model with alternative machines. In the traditional approaches, process planning and scheduling are done sequentially, where the process plan is determined before the actual scheduling is performed. Although these methods may be simple, they ignore the relationship between scheduling and process planning. By assuming that scheduling takes over the process plan is determined, the possible choice of the schedule using alternative machines is ignored. Recently, some researches for the integrated process planning and scheduling are presented.

Hankins et al.(1984) discussed the advantages of using alternative machine tool routeings to improve

[^0]the productivity of the machine shop. They showed that using alternative machine results in reducing lead-time and in improving overall machine utilization. They stated that with a large number of jobs to schedule, and a large number of alternative machines are available, the use of mathematical programming techniques to balance the workload becomes prohibitive.
Nast and Elsayed (1990) present two heuristics to determine an efficient schedule for the n jobs, m machines problem with alternative machine tool routeings allowed for each operation. And the object is to minimize the mean flow time for jobs.

Kusiak and Finke (1987) considered a Flexible Forging Module (FFM) and identified the sequence dependent changeover cost. In order to obtain an optimal schedule, they developed a network model, which easily incorporates both the sequencedependent changeover costs and the precedence constraints. They employed a branch-and-bound algorithm to solve the model.

Palmer(1996) and Sundaram et al.(1988) discussed integrated process planning and scheduling. Palmer used simulated annealing(SA).
Brandimarte and Calderini(1995) developed a two-phase hierarchical tabu search for efficient planning and scheduling. Palmer(1996) developed a method based on simulated annealing. However, They did not consider the precedence rule for the operation- sequence but only considered the time aspect with non-constraint operational sequence.
The general objective of this research is to develop a model to integrate process planning and scheduling with outsourcing through analysis of the alternative machine selection, the operation-sequencing problem and production capacity under the due date. The integrated states include: (1) Operations sequencing, (2) Machine selection, (3) Scheduling with outsourcing under the due date. To solve the model, a heuristic approach based on genetic algorithm(GA) is developed.
The remainder of the paper is arranged as follows: section 2 described the problem definition and topological sort (TS) is in section 3. An approach model based on GA is presented in section 4. Section 5 describes the experimental results compared with former approach and finally, some discussion and conclusions are given in section 6 .

2. Problem definition

A product in the manufacturing system is consists of
several components designed by CAD department. For the first step, process planner should recognize the geometrical features of the components and consider the best practices in producing. If each component is required a job, which means a set of machining processes to produce independently, a job may have several operations and each operation needs one machine to complete a job. In this point, the operations of a job may have the precedence constraints. For instance, considering the process of soft-drink products let assume the operations are separated to two processes that one is to fill up the drink and the other is to seal the bottle. Sealing operation is constrained by filling operation.
Actually, almost operations of the jobs have the operation-sequences. It means that a certain operation among the operations of a job has a precedence constraint and some operations to complete a job are interrelated each other. Therefore, the operations sequencing problem can be formulated as a wellknown Traveling Salesman Problem(TSP) (Dantzig et al. 1954, Lawler et al. 1985, Malek et al. 1989) The manufacturing system under study consists of m machines $(1,2, \cdots, m)$ and n different jobs $(1,2, \cdots$, n). All the jobs are loaded and processed continuously as a lot according to a predetermined technological sequence given in the process plan(Nasr et al. 1990). Each job, i, requires a number of operations. Each of these operations can be performed on a number of alternative, non-identical machines.
The proposed model is developed for the heavy industry such as turbine manufacturing, generator manufacturing and ship engine manufacturing. Some specific characters of the heavy industry are small lot size and long processing time for an operation. Because the heavy industry production is huge size and need long operation time, it is very important to keep the due date of production. At this point we employed the outsourcing factors for the model. If the lot size of production is more than one, operations that ate related to a job should search the alternative machines considering outsourcing in each lot number to minimize the makespan of the machine schedule. A machine should be selected among alternate for operation-sequence of each job. For a given production order-job mix and their lot sizes, the alternative machine for operation- sequence should be selected for the maximum efficiency of production of all the jobs.
An integrated model in this paper includes the operations sequencing approach with alternative machines of outsourcing. The process planning and

Figure 1. Schematic diagram of integrated model.
scheduling considering outsourcing as shown in $<$ Figure 1> are actually interrelated and be solved simultaneously under the due date.

3. Topological sort(TS)

TS algorithm(Horowitz et al. 1984) is employed to solve the problem that determines the operationsequence of a job. A directed graph G in which the vertices represent activities and the edges represent precedence relations between activities is an activity on vertex (AOV) network as shown in \langle Figure $2>$. It is clear that a topological order is not possible if the graph has a cycle. A directive graph with no directed cycles is an acyclic graph. TS algorithm to test an AOV network for feasibility will also generate a linear ordering, $v_{1}, v_{2}, \cdots, v_{n}$, of the vertices.
This linear ordering will have the priority that if v_{1} is a predecessor of v_{2} in the network then v_{1} precedes v_{2} in the linear ordering. A linear ordering with this priority is called a topological order(TO). The algorithm to sort the takes into TO is straightforward and proceeds by listing out a vertex in the network that has no predecessor. Then, this vertex together with all edges leading out from it is deleted from the network.

To find a topological order, the first step is to select any vertex with no incoming edges, and then print this vertex. Next, the printed vertex is removed, along with its edges, from the graph. The

Figure 2. The method for selecting topological order.
graph in <Figure 2>, represents the method for selecting TO(Hwang et al. 1994).
Six paths can be selected for TOs from <Figure $2>$. They are as follows:

1) $v_{1}-v_{2}-v_{3}-v_{4}-v_{5}-v_{6}$
2) $v_{1}-v_{2}-v_{4}-v_{3}-v_{5}-v_{6}$
3) $v_{1}-v_{2}-v_{4}-v_{5}-v_{3}-v_{6}$
4) $v_{2}-v_{1}-v_{3}-v_{4}-v_{5}-v_{6}$
5) $v_{2}-v_{1}-v_{4}-v_{3}-v_{5}-v_{6}$
6) $v_{2}-v_{1}-v_{4}-v_{5}-v_{3}-v_{5}$

Let n be the number of vertices, the TS procedure for TO order can be described as <Figure 3> (Horowitz et al. 1984).
From the above TS procedure, we know that a set of tours of AOV can be generated by the TS procedure. Therefore, the goal of AOV is to find a tour, which visits each vertex exactly once and is of shortest path from a set of TOs. By assuming that a directed graph G is a process plan of a job which has six operations with precedence constrains, the shortest path from a set of TOs will be determined operationsequence of a job.

```
Procedure: Topological sort
    lmput: AOV network. Let N be the number of vertices:
    For }i=1\mathrm{ to Ndo
    Begin
        If every verex has a prececessor
            Then the network is infeasible stop:
        Else pick a vertex v; which has no predecessors:
            Output v;
        Delete \mp@subsup{v}{i}{}\mathrm{ and all edges leading out of }\mp@subsup{v}{i}{}\mathrm{ from the network;}
        End;
    End;
```

Figure 3. Procedures of topological sort.

4. GA-based approach for integrated model

GA is one of the ewhrionay seath methods that can ptovide eptimal ot neat optimal sohtions for the combintotial optimation problems. It has been applied to a number of felds life engineting, bidogy, compinter science, and social suiences. Ote of most attactive feature of GA is the flexibility of handling on watios kinds of objective functions with femen tequitements an fine mathembical property (Gen e al 1997).

The main issires in developing a genetic algotithm ate chtomosme teptesentabn, infialization of the popilation, evalution measute, cococot, mintan, and selection strategy. Also, the genetic parameters surh as popilation sibe pof size, mumet of genetation max gen, probubility of cosowet pr, atod ptobability of mitation $p m$, dete detriined before Exection of GA.

In this section, we propose an efficient GA-based apptoach, which ontains a TS algotinh for solving integtated ptocess planing and schediding model with ptecedence constatints.

4.1 Representation and Initialization

In otdering problem using GA, a ctimal issue is the development of teptesentation sheme to teptesent a feasible soltrion. It is very diffoult task how to teptesent a path with ptecedence ontstaints in gtath. In otdet to geterate a $T O$, the teptesentation sheme has to capable of genetaitg all posible TOs fot a given AOV. Also, any tout of the solition alwas cotesponds to TO Suppose thete ate one job, which is opnsist of sox verioes, named on throgh 3. A chtomosme stintine can be teptesented as shown in \langle Figure $4>$.

In \langle Figute 4\rangle, the fitst tow of chomosome means the wertices that matried with tandomby selected machine mubut fot each wertex of AOV netwotk Each wertex tandomly selects a machine number within the pessite alternative machines. Second tow means the ptiptity for cachlidate selection in case of the verices with no incoming edges is exist. Fot exariple, when b_{1} and w_{2} have no ptecedent constains at the same time as shown in $<$ Figate $4>, w_{2}$ is selected fot quetrion-sequence.

The waine of a gene is gecerated at tacodom wifhin [1, M] exclusively, whete N is the number of wertices. The poerall procedite fot the feasible solntion reptesentano is as shown in \langle Figure $5>$.

Figure 4. Chromprome cepresentaion

```
Procedure: Feasible solution representation
    Input data:
        Number of jobs and machines and number of operations for each job ;
            Let th@ (i=l,\ldots,N) be the N
                the orderly manner;
            Precedence sequencof eachoperation;
        Alternative machine and time for each operation including outsourcing
            Transportation time for outsoųrcing
    Begin:
        Generate Chromosome with Machine selection:
            Allocate a randomly selected machine to each operation,;
            Generate random priority numberN() ftg each operationy;
    Generate operations sequencing:
        Determine the operation-sequence of each job with the generated
            random priority number and TO;
        Determine the makespan time for each machine to complete all job:
            FOr i=1 to k(i ismachine number)
                M
            For }j=1\mathrm{ to m}\mathrm{ do (j is j}\mp@subsup{j}{hh}{}\mathrm{ operation of each job)
                                    If the }\mp@subsup{j}{th}{}\mathrm{ operation has no idle time according
                                    to the determined operation-sequences
                                    Then }\mp@subsup{M}{i}{}=\mp@subsup{M}{i}{}+\mathrm{ machining time ofjh}\mathrm{ operation;
                                    Else compute the idle time according
                            to the determined operation-sequences
                Then M}\mp@subsup{M}{i}{}=\mp@subsup{M}{i}{}+\mathrm{ idle_time + machining time of flh}\mathrm{ operation;
            End;
    End;
```

Figure 5. Feasible solition teptesentanion.

The fitst step in genetic algotith is to initalize the pepilation of chomosmes. The intialisation ptocess is exented with a tandomly generated poplation.

4.2 Selection and Fitmess evaluation

In this papet the formilation considets oclly one objective firation for the integration of process planning acd schediding. The objective is to minimise makespan, which describes, as the time tequired completing all n jobs, thus the completion time of the last job will be the makespan time urder the limited prodrction time according to the due date. For the best makespat time, we teed a procedite to detetmice the allocation of cpetarions to each

Figure 6. Flow chart for fitness evaluation.
machine constrained by determined operation sequences considering outsourcing.

Fitness evaluation has some specific constrained factors: (1) the makespan should be less than the limited production time (due date), (2) when a certain operation of a job need outsourcing, it is necessary to consider the transportation time for outsourcing as shown in \langle Figure 6>.

4.3 Crossover and mutation

To create the next generation, new set of chromosomes called offspring is formed by the execution of genetic operators such as selection, crossover and mutation. In particular, the crossover operator acts as the main operator and exercises a great influence on performance of the GA approach. While the mutation operator acts a background operator. In this paper, the order-based crossover is employed. The order of tasks in the selected position in one parent is imposed on the corresponding tasks in the other parent. The order-based mutation interchanges the positions of the rankings at random. An example of the order-based crossover is illustrated in <Figure 7>. Suppose that two chromosomes are parent $1=\left[\begin{array}{lllll}5 & 1 & 2 & 4 & 6\end{array}\right]$ and
parent $2=\left[\begin{array}{llll}2 & 6 & 1 & 4\end{array} 35\right.$], assuming each 2 columns from the left are job1, job2 and job3 respectively.
With the same procedure, we can produce a modified parent 1 as $\left[\begin{array}{llllll}6 & 1 & 2 & 4 & 3 & 5\end{array}\right]$. The swap mutation operator is introduced here. The swap scheme is select two genes within a chromosome at random and then swap these contents.
(1) Select the sub-string from parent 1 at random

(2) Produce a modified parent 1

Figure 7. Illustration of the order-based crossover.

4.4 GA-based approach test with TO

Numerical test have been provided in order to demonstrate the effectiveness and efficiency of the proposed GA approach on AOV. A number of problems of varying sizes were solved using GA with varying genetic parameter values. The test considered 6 vertices and 9 precedence constraints as shown in <Figure 2>. We impose the distances between the vertices v_{i} and v_{j} as shown in \langle Table 1\rangle.

Table 1. TSP data

	v_{i}	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}
v_{1}	∞	7	3	12	5	8
v_{2}	4	∞	2	10	9	3
v_{3}	6	7	∞	11	1	7
v_{4}	7	3	1	∞	8	3
v_{5}	2	10	2	7	∞	3
v_{6}	4	11	7	6	3	∞

By the method in＜Figure 5＞，we could determine the possible TO pass and the values as follows：
$v_{1}-v_{2}-v_{3}-v_{4}-v_{5}-v_{6}:$ value 32
$v_{1}-v_{2}-v_{4}-v_{4}-v_{5}-\nu_{5}:$ value 22
$v_{1}-v_{2}-v_{4}-v_{5}-v_{3}-v_{6}:$ value 34
$v_{2}-v_{1}-v_{3}-v_{4}-v_{5}-v_{6}$ ：value 29
$v_{2}-v_{1}-v_{4}-v_{4}-v_{5}-v_{6}$ ：value 21
$v_{2}-v_{1}-v_{4}-\nu_{5}-v_{3}-v_{6}$ ：value 33
To solve the problem using the proposed genetic algorithm，the genetic parameters are set as maximum generation，max＿gen $=30$ ；population size，$p o p_{_}$size $=20$ ；crossover probability，$p c=0.5$ ； mutation probability，$p m=0.2$ ．From this experiment， the proposed GA approach can be reached at the optimal solution at most times．The optimal value is 21 and the optimal tour $x_{21}=1, x_{14}=1, x_{43}=1$ ， $x_{35}=1$ ，and $x_{56}=1$ are generated．Then，the optimal sequence is $v_{2}-v_{1}-v_{4}-v_{3}-v_{5}-v_{5}$ with the corres－ ponding value 21 ．

5．Experiments

5．1 Experiment for integrated model with GA－based approach

The data that consists of five jobs and five machines （including one outsourcing machine）is used here to test the proposed model as shown in $<$ Table $2>$ ．

The proposed model is developed for the heavy industry．Some specific characters of the heavy industry are small lor size and long time for an operation．In experimental data，the number 5 machine belongs to outsourcing and the transportation time （one way）is 10 per one lot size．
Each job conducts 4 different operations in a specified order．Let the $v_{i}(i=1, \cdots, 20)$ be the operations for five jobs in the orderly manner．The lot size is two and the due date is 70 ．The genetic parameters for integrated model are as follows：
－Population size ： 100 ，
－Number of generation ： 1000
－Probability of crossover ： 0.4
－Probability of mutation ： 0.1
－Lot size ： 2
－Due date ：70
This experiment considers precedence operation constraints．The precedence constraints are as shown in＜Figure 8＞．

As a result of the best chromosome and the machines for all n jobs are as shown in＜Table 3＞．

By the above chromosome，the best operation sequences for all n jobs are determined．When the operations sequencing is considered，the minimized makespan is 66 as shown in＜Table 4＞and ＜Figure 9＞．

5．2 Comparing with former researches

The data provided in Sundaram and $\mathrm{Fu}(1988)$ ，

Table 2．Machining time for operations

Operation	v_{1}	v_{2}	13	v_{4}	v_{5}	$2{ }_{6}$	v	28	v9	v_{10}	v_{51}	v_{12}	213	v_{14}	v_{15}	v_{16}	v_{17}	v_{18}	v_{19}	20
Machine NO．	Jobl				Job2				Job3				Job4				Jobs			
1	5	∞	∞	∞	7	∞	∞	∞	4	∞	∞	4	∞	∞	∞	∞	3	∞	∞	5
2	3	7	∞	3	∞	4	∞	5	5	∞	∞	∞	2	∞	∞	6	∞	∞	∞	∞
3	∞	∞	6	∞	∞	6	7	∞	8	∞	∞	∞	6	8	3	∞	5	7	∞	∞
4	∞	∞	∞	3	∞	∞	7	∞	¢	5	6	∞	∞	∞	8	7	∞	∞	9	∞
5 （outsourcing）	∞	∞	¢	4	∞	∞	－0．	10	0%	00^{2}	第数	䋛 4	100\％	00	∞	4	－	∞	6	3

（a）Job 1

（b）Job 2

（c）Job 3

（d）Job 4

（e）Job 5

Figure 8．Precedence constraints for each job．

Table 3. The best chromosome with machines and operation-sequences for all n jobs

v_{1} $(M 2)$	v_{2} $(M 2)$	v_{3} $(M 3)$	v_{4} $(M 2)$	v_{5} $(M 1)$	v_{5} $(M 2)$	v_{1} $(M 4)$	v_{8} $(M 2)$	v_{5} $(M 1)$	v_{10} $(M 4)$	v_{11} $(M 4)$	v_{12} $(M 5)$	Etc.
19	5	6	17	2	1	13	14	7	12	11	20	

	Determined operation-sequences			
Job 1	1	2	3	4
Job 2	6	5	7	8
Job 3	9	11	10	12
Job 4	13	15	14	16
Job 5	19	17	18	20

Table 4. Schedule output with operations sequencing

Figure 9. Sthedule output in the foom of a Gantt chatt.
Table 5. Machining time for oprations(

\bigcirc Opention	0	ν_{2}	3	4	\%	昭	4	边	4	4	[1	$2{ }^{2}$	23	C_{4}	θ_{3}	26	0_{17}	v_{13}	t_{19}	w_{20}
Mentine NO	Jobl.				Joter				jobs				Jobs				Jobs			
1	5	¢	∞	¢	7	∞	∞	∞	4	∞	∞	∞	∞	¢	¢	∞	3	∞	∞	∞
2	3	7	∞	3	∞	4.	∞	∞	5	∞	∞	∞	2	∞	∞	6	∞	∞	∞	∞
3	∞	¢	6	¢	∞	6	7	∞	8	∞	∞	∞	6	8	3	∞	5	7	∞	∞
4	∞	¢	∞	3	∞	∞	7	∞	¢	5	6	¢	-	¢	8	7	¢	∞	9	∞
5	∞	¢	∞	4	∞	∞	∞	10	∞	∞	5	4	∞	¢	¢	4	∞	∞	6	3

Figure 10. Schedule outpur in the foom of a Gante chatt.
consisting of 5 jobs and 5 machines is used hete to test the developed GA-bused apptorch. Ift the a $(i=1, \cdots, 20)$ be the opetations fot 5 jobs in the otdethy manct. Altentisive manhines of ptomessing the patis ate given in \langle Table $5>$. Sirndatain and Fir (1988) did not considet the opetation sequencing and each jot condirts 4 differetit operations in a sequential otdet. So the opetations of $b_{3} b_{0} b_{3} b_{b} b_{7}$ howe no ptecedence ronstaints and the othet operamo wis ptedecesor of b_{4}, in the netwotk.

Using the GA-based apptom, the best makespan Walie otrained is 33 as showin in Figute 10\rangle compared to the walue of 38 otrained using the heuristic tepoted by Sundaram and Fin(1988). Palmet (1996) used simulated andealing fot this problem and obtained the same tesint of 33 as shown in <Table 6>. These resints mean that the GA-based approch is betot than the fomen tesearches.

Table 6. The conyred result with former ressarthed methods

	Sundam and Fu	Palmer	Proposed Menhod
Malespan	38	3	33

6. Conclusions

Even thangh thete has been a lot of stadies on scheduling, it still temains one of the concenting issures annong tesearchers in manderanting optimization. The tredironal method, which is linited to howing ton-sequential operations, does not oddress the availatility of these alternative machines and opetaions with ptecedence constraints. The Integrated model ptesented in this papet detetrimes the best shedules with operation-sequences and alterne-
tive machites considering oursourcing. This is tately sturdied so far and there is to similar papet, which considered the precedence constrints of opetations. From the experimental tesirts, we kerow that the proposed approwh is suitable the integtated process planing and schedulitg problems. For the firtute stirdy, art model will be extended to integtate the otder inits in make-to-order machifaconting suxply chain.

References

Bandemare P. and Calderinc M. (1995), A heurivic bicrimetion approach to inegrared process plan selection and jots shop sheduling. Inconotimad Jownof of Produrim Rewem, 3; 161-181.
Beamon, B. M. (199B), Supply chain design and analpses Models and merthods. Ths J. Braction Eomonia. 55. 281.294

Danage G. B., Fulkerson, D. R. and Johnson, Si.M. (1954), Solution of a largescale traveling salesman problem. Operamims Recard. 2, 393410.
Ger, M. and Cheng R (1997), Gmaic aborime ma'

Engineving dign New York: John Wiler $\$$ Sons.
Hankins, S. L, Wrek R A and For, K R. (1984), Using a CATS darabuse for anernarive machine loading. Jownal of Mengfarding Sutens, 3. 115-720.
Homen de Mello, L, S. and Sanderson, A. C (1990, ANDOR graph repesenarion of assembir plan, IES

 strower in pord (Compurer science pres).
Hwan J. C. and Son, J. G. (994), Defo strowe in C fangage seoul: Junglsa.
Kusiak, A and Finke G (1987), Modeling and solwing the flexible forging module scheduling problem, Eng Ops. $1.2,7.12$
Lawer, E. L, Lenstra, J. K., Rinnoop Kan, A. H. G, and Shumps, D. B. (1985), The thatirg swerman proben: a
 Wilep $\&$ Sons.
Malek, M, Guruswamp, M, Pandpa, M, and Owens, H (1989), Seralal and parallel somulared ancealing and rabu search algormbis for the traveling saleman problem. Aman of Operame Reverb, 21. 59-84.
Nasr, N. and Elsaped, A. (1990), Job shop sheduling with alternative machines, lim. Fi. Bud Rer. 28, 1595-1609.
Palmer, G. J. (1990. A smalared anoeliog approach to integrated produccion scheduling. Jomard of laterigens Mandaturng: 7, 167-176.
Sundaram, R M. and Fu, S. S. (1988), Proces planing and

문지옹

울산대 학교 산업곱학과 학자
컨국대 학교 산업공학꽈 척사
전국대학교 산업곱학퐈 박사

현개: 한얌대 학교 산업공학과 연구교수
간심분 야: 8 O 에, 동합치스템 모델링, 정 보시스 템, 지능 탐색할고리 좀 물율

[^0]: \dagger This research was supported by Brain Korea 21.

