• 제목/요약/키워드: Prebiotics

검색결과 118건 처리시간 0.025초

Gut Microbiome as a Possible Cause of Occurrence and Therapeutic Target in Chronic Obstructive Pulmonary Disease

  • Eun Yeong Lim;Eun-Ji Song;Hee Soon Shin
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권9호
    • /
    • pp.1111-1118
    • /
    • 2023
  • As a long-term condition that affects the airways and lungs, chronic obstructive pulmonary disease (COPD) is characterized by inflammation, emphysema, breathlessness, chronic cough, and sputum production. Currently, the bronchodilators and anti-inflammatory drugs prescribed for COPD are mostly off-target, warranting new disease management strategies. Accumulating research has revealed the gut-lung axis to be a bidirectional communication system. Cigarette smoke, a major exacerbating factor in COPD and lung inflammation, affects gut microbiota composition and diversity, causing gut microbiota dysbiosis, a condition that has recently been described in COPD patients and animal models. For this review, we focused on the gut-lung axis, which is influenced by gut microbial metabolites, bacterial translocation, and immune cell modulation. Further, we have summarized the findings of preclinical and clinical studies on the association between gut microbiota and COPD to provide a basis for using gut microbiota in therapeutic strategies against COPD. Our review also proposes that further research on probiotics, prebiotics, short-chain fatty acids, and fecal microbiota transplantation could assist therapeutic approaches targeting the gut microbiota to alleviate COPD.

Strategies for reducing noxious gas emissions in pig production: a comprehensive review on the role of feed additives

  • Md Mortuza Hossain;Sung Bo Cho;In Ho Kim
    • Journal of Animal Science and Technology
    • /
    • 제66권2호
    • /
    • pp.237-250
    • /
    • 2024
  • The emission of noxious gases is a significant problem in pig production, as it can lead to poor production, welfare concerns, and environmental pollution. The noxious gases are the gasses emitted from the pig manure that contribute to air pollution. The increased concentration of various harmful gasses can pose health risks to both animals and humans. The major gases produced in the pig farm include methane, hydrogen sulfide, carbon dioxide, ammonia, sulfur dioxide and volatile fatty acids, which are mainly derived from the fermentation of undigested or poorly digested nutrients. Nowadays research has focused on more holistic approaches to obtain a healthy farm environment that helps animal production. The use of probiotics, prebiotics, dietary enzymes, and medicinal plants in animal diets has been explored as a means of reducing harmful gas emissions. This review paper focuses on the harmful gas emissions from pig farm, the mechanisms of gas production, and strategies for reducing these emissions. Additionally, various methods for reducing gas in pigs, including probiotic interventions; prebiotic interventions, dietary enzymes supplementation, and use of medicinal plants and organic acids are discussed. Overall, this paper provides a comprehensive review of the current state of knowledge on reducing noxious gas in pigs and offers valuable insights for pig producers, nutritionists, and researchers working in this area.

Microbial Community of Healthy Thai Vegetarians and Non-Vegetarians, Their Core Gut Microbiota, and Pathogen Risk

  • Ruengsomwong, Supatjaree;La-ongkham, Orawan;Jiang, Jiahui;Wannissorn, Bhusita;Nakayama, Jiro;Nitisinprasert, Sunee
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권10호
    • /
    • pp.1723-1735
    • /
    • 2016
  • Pyrosequencing analysis of intestinal microflora from healthy Thai vegetarians and non-vegetarians exhibited 893 OTUs covering 189 species. The strong species indicators of vegetarians and non-vegetarians were Prevotella copri and Bacteroides vulgatus as well as bacteria close to Escherichia hermanii with % relative abundance of 16.9 and 4.5-4.7, respectively. Core gut microbiota of the vegetarian and non-vegetarian groups consisted of 11 and 20 different bacterial species, respectively, belonging to Actinobacteria, Firmicutes, and Proteobacteria commonly found in both groups. Two species, Faecalibacterium prausnitzii and Gemmiger formicilis, had a prevalence of 100% in both groups. Three species, Clostridium nexile, Eubacterium eligens, and P. copri, showed up in most vegetarians, whereas more diversity of Collinsella aerofaciens, Ruminococcus torques, various species of Bacteroides, Parabacteroides, Escherichia, and different species of Clostridium and Eubacterium were found in most non-vegetarians. Considering the correlation of personal characters, consumption behavior, and microbial groups, the age of non-vegetarians showed a strong positive correlation coefficient of 0.54 (p = 0.001) to Bacteroides uniformis but exhibited a moderate one to Alistipes finegoldii and B. vulgatus. Only a positive moderate correlation of body mass index and Parabacteroides distasonis appeared. Based on the significant abundance of potential pathogens, the microbiota of the non-vegetarian group showed an abundance of potential pathogen varieties of Bilophila wadsworthia, Escherichia coli, and E. hermannii, whereas that of the vegetarian group served for only Klebsiella pneumoniae. These results implied that the microbiota of vegetarians with high abundance of P. copri and low potential pathogen variety would be a way to maintain good health in Thais.

Effects of Dietary Synbiotics from Anaerobic Microflora on Growth Performance, Noxious Gas Emission and Fecal Pathogenic Bacteria Population in Weaning Pigs

  • Lee, Shin Ja;Shin, Nyeon Hak;Ok, Ji Un;Jung, Ho Sik;Chu, Gyo Moon;Kim, Jong Duk;Kim, In Ho;Lee, Sung Sill
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제22권8호
    • /
    • pp.1202-1208
    • /
    • 2009
  • Synbiotics is the term used for a mixture of probiotics (live microbial feed additives that beneficially affects the host animal) and prebiotics (non-digestible food ingredients that beneficially affect the organism). This study investigated the effect of probiotics from anaerobic microflora with prebiotics on growth performance, nutrient digestibility, noxious gas emission and fecal microbial population in weaning pigs. 150 pigs with an initial BW of 6.80${\pm}$0.32 kg (20 d of age) were randomly assigned to 5 dietary treatments as follows: i) US, basal diet+0.15% antibiotics (0.05% oxytetracycline 200 and 0.10% tiamulin 38 g), ii) BS, basal diet+0.2% synbiotics (probiotics from bacteria), iii) YS, basal diet+0.2% synbiotics (probiotics from yeast), iv) MS, basal diet+0.2% synbiotics (probiotics from mold), v) CS, basal diet+0.2% synbiotics (from compounds of bacteria, yeast and mold). The probiotics were contained in $10^{9}$ cfu/ml, $10^{5}$ cfu/ml and $10^{3}$ tfu/ml of bacteria, yeast and molds, respectively. The same prebiotics (mannan oligosaccharide, lactose, sodium acetate and ammonium citrate) was used for all the synbiotics. Pigs were housed individually for a 16-day experimental period. Growth performance showed no significant difference between antibiotic treatments and synbiotics-added treatments. The BS treatment showed higher (p<0.05) dry matter (DM) and nitrogen digestibility while ether extract and crude fiber digestibility were not affected by the dietary treatment. Also, the BS treatment decreased (p<0.05) fecal ammonia and amine gas emissions. Hydrogen sulfide concentration was also decreased (p<0.05) in BS, YS and MS treatments compared to other treatments. Moreover, all the synbioticsadded treatments increased fecal acetic acid concentration while the CS treatment had lower propionic acid concentration than the US treatment (p<0.05) gas emissions but decreased in fecal propionate gas emissions. Total fecal bacteria and Escherichia coli populations did not differ significantly among the treatments, while the Shigella counts were decreased (p<0.05) in synbiotics-included treatment. Fecal bacteria population was higher in the YS treatment than other treatments (p<0.05). The BS treatment had higher yeast concentration than YS, MS and CS treatments, while US treatment had higher mold concentrations than MS treatment (p<0.05). Therefore, the results of the present study suggest that synbiotics are as effective as antibiotics on growth performance, nutrient digestibility and fecal microflora composition in weaning pigs. Additionally, synbiotics from anaerobic microflora can decrease fecal noxious gas emission and synbiotics can substitute for antibiotics in weaning pigs.

Some Prophylactic Options to Mitigate Methane Emi ssion from Animal Agriculture in Japan

  • Takahashi, Junichi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제24권2호
    • /
    • pp.285-294
    • /
    • 2011
  • The abatement of methane emission from ruminants is an important global issue due to its contribution to greenhouse gas with carbon dioxide. Methane is generated in the rumen by methanogens (archaea) that utilize metabolic hydrogen ($H_2$) to reduce carbon dioxide, and is a significant electron sink in the rumen ecosystem. Therefore, the competition for hydrogen used for methanogenesis with alternative reductions of rumen microbes should be an effective option to reduce rumen methanogenesis. Some methanogens parasitically survive on the surface of ciliate protozoa, so that defaunation or decrease in protozoa number might contribute to abate methanogenesis. The most important issue for mitigation of rumen methanogenesis with manipulators is to secure safety for animals and their products and the environment. In this respect, prophylactic effects of probiotics, prebiotics and miscellaneous compounds to mitigate rumen methanogenesis have been developed instead of antibiotics, ionophores such as monensin, and lasalocid in Japan. Nitrate suppresses rumen methanogenesis by its reducing reaction in the rumen. However, excess intake of nitrate causes intoxication due to nitrite accumulation, which induces methemoglobinemia. The nitrite accumulation is attributed to a relatively higher rate of nitrate reduction to nitrite than nitrite to ammonia via nitroxyl and hydroxylamine. The in vitro and in vivo trials have been conducted to clarify the prophylactic effects of L-cysteine, some strains of lactic acid bacteria and yeast and/or ${\beta}$1-4 galactooligosaccharide on nitrate-nitrite intoxication and methanogenesis. The administration of nitrate with ${\beta}$1-4 galacto-oligosaccharide, Candida kefyr, and Lactococcus lactis subsp. lactis were suggested to possibly control rumen methanogenesis and prevent nitrite formation in the rumen. For prebiotics, nisin which is a bacteriocin produced by Lactococcus lactis subsp. lactis has been demonstrated to abate rumen methanogenesis in the same manner as monensin. A protein resistant anti-microbe (PRA) has been isolated from Lactobacillus plantarum as a manipulator to mitigate rumen methanogenesis. Recently, hydrogen peroxide was identified as a part of the manipulating effect of PRA on rumen methanogenesis. The suppressing effects of secondary metabolites from plants such as saponin and tannin on rumen methanogenesis have been examined. Especially, yucca schidigera extract, sarsaponin (steroidal glycosides), can suppress rumen methanogenesis thereby improving protein utilization efficiency. The cashew nutshell liquid (CNSL), or cashew shell oil, which is a natural resin found in the honeycomb structure of the cashew nutshell has been found to mitigate rumen methanogenesis. In an attempt to seek manipulators in the section on methane belching from ruminants, the arrangement of an inventory of mitigation technologies available for the Clean Development Mechanism (CDM) and Joint Implementation (JI) in the Kyoto mechanism has been advancing to target ruminant livestock in Asian and Pacific regions.

소아의 면역영양 (Immunonutrition in Children)

  • 양혜란
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • 제11권sup1호
    • /
    • pp.111-116
    • /
    • 2008
  • Immunonutrition is the provision of specific nutrients that modulate the activity of the immune system. Several nutrients including arginine, glutamine, nucleotides, omega-3 fatty acids, vitamins, minerals, and prebiotics can be provided to enhance immunity in critically ill patients. Supplying immunonutrition to critically-ill children, better prognosis and shortening of the hospital stay are expected from its immuno-modulating effects. Therefore, immune-enhancing enteral and parenteral formulas can be recommended in children with severe illness.

  • PDF

A New Method of Producing a Natural Antibacterial Peptide by Encapsulated Probiotics Internalized with Inulin Nanoparticles as Prebiotics

  • Cui, Lian-Hua;Yan, Chang-Guo;Li, Hui-Shan;Kim, Whee-Soo;Hong, Liang;Kang, Sang-Kee;Choi, Yun-Jaie;Cho, Chong-Su
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권4호
    • /
    • pp.510-519
    • /
    • 2018
  • Synbiotics are a combination of probiotics and prebiotics, which lead to synergistic benefits in host welfare. Probiotics have been used as an alternative to antibiotics. Among the probiotics, Pediococcus acidilactici (PA) has shown excellent antimicrobial activity against Salmonella Gallinarum (SG) as a major poultry pathogen and has improved the production performances of animals. Inulin is widely used as a prebiotic for the improvement of animal health and growth. The main aim of this study was to investigate the antimicrobial activity of inulin nanoparticle (IN)-internalized PA encapsulated into alginate/chitosan/alginate (ACA) microcapsules (MCs) for future in vivo application. The prepared phthalyl INs (PINs) were characterized by DLS and FE-SEM. The contents of phthal groups in the PINs were estimated by $^1H-NMR$ measurement as 25.1 mol.-%. The sizes of the PINs measured by DLS were approximately 203 nm. Internalization into PA was confirmed by confocal microscopy and flow cytometry. The antimicrobial activity of PIN-internalized probiotics encapsulated into ACA MCs was measured by coculture antimicrobial assays on SG. PIN-internalized probiotics had a higher antimicrobial ability than that of ACA MCs loaded with PA/inulin or PA. Interestingly, when PINs were treated with PA and encapsulated into ACA MCs, as a natural antimicrobial peptide, pediocin was produced much more in the culture medium compared with other groups with inulin-loaded ACA MCs and PA encapsulated into ACA MCs.

Fructans from Renga Renga Lily (Arthropodium cirratum) Extract and Frutafit as Prebiotics for Broilers: Their Effects on Growth Performance and Nutrient Digestibility

  • Vidanarachchi, J.K.;Iji, P.A.;Mikkelsen, L.L.;Choct, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제23권5호
    • /
    • pp.580-587
    • /
    • 2010
  • An experiment was conducted to evaluate the effect of dietary water-soluble carbohydrate extract from Renga renga lily (Arthropodium cirratum) and a commercial product, $Frutafit^{{\circledR}}$ (both fructans) on the performance, organ weights, ileal digestibility and gut morphology of male Cobb broiler chickens. There were six treatment groups: a negative control with no supplements, a positive control supplemented with 45 ppm Zn-bacitracin, and four test diets each supplemented with Renga renga lily extract or Frutafit at 5 or 10 g/kg diet. Supplementation with low levels of Renga renga lily extract and Frutafit in the diet did not affect productive parameters, whereas the inclusion of a high level of Frutafit had a negative effect on BWG and FI compared with birds fed the negative control diet. The addition of an antibiotic to the diet significantly improved (p<0.05) the BWG and FCR of broilers. Apparent ileal digestibility of dry matter, starch, protein and fat was not affected (p>0.05) by supplementation with both levels of lily extract and the low level of Frutafit. The apparent ileal digestibility of dry matter, protein and fat was decreased (p<0.05) by the high level of Frutafit. The apparent metabolisable energy (AME) of the diets fed the high level of Frutafit was approximately 0.2 MJ/kg DM lower than that of the negative control group. The addition of Zn-bacitracin increased (p<0.05) the apparent ileal digestibility of fat. The relative weight of the liver was higher (p<0.05) in broilers supplemented with the high level of Frutafit than for negative control birds at 14 and 35 d of age. Feeding Renga renga lily extract or Frutafit had no effect on the gut morphology of birds on d 14 and 35. It can be concluded that dietary inclusion of fructans from the two sources used in this study affected broiler performance differently and in a dose-dependent manner.

Synbiotics use for preventing sepsis and necrotizing enterocolitis in very low birth weight neonates: a randomized controlled trial

  • Pehlevan, Ozge Serce;Benzer, Derya;Gursoy, Tugba;Karatekin, Guner;Ovali, Fahri
    • Clinical and Experimental Pediatrics
    • /
    • 제63권6호
    • /
    • pp.226-231
    • /
    • 2020
  • Background: Probiotics and prebiotics have strain-specific effects on the host. Synbiotics, a mixture of probiotics and prebiotics, are proposed to have more beneficial effects on the host than either agent has alone. Purpose: We performed a randomized controlled trial to investigate the effect of Lactobacillus and Bifidobacterium together with oligosaccharides and lactoferrin on the development of necrotizing enterocolitis (NEC) or sepsis in very low birth weight neonates. Methods: Neonates with a gestational age ≤32 weeks and birth weight ≤1,500 g were enrolled. The study group received a combination of synbiotics and lactoferrin, whereas the control group received 1 mL of distilled water as placebo starting with the first feed until discharge. The outcome measures were the incidence of NEC stage ≥2 or late-onset cultureproven sepsis and NEC stage ≥2 or death. Results: Mean birth weight and gestational age of the study (n=104) and the control (n=104) groups were 1,197±235 g vs. 1,151±269 g and 29±1.9 vs. 28±2.2 weeks, respectively (P>0.05). Neither the incidence of NEC stage ≥2 or death, nor the incidence of NEC stage ≥2 or late-onset culture-proven sepsis differed between the study and control groups (5.8% vs. 5.9%, P=1; 26% vs. 21.2%, P=0.51). The only significant difference was the incidence of all stages of NEC (1.9% vs. 10.6%, P=0.019). Conclusion: The combination of synbiotics and lactoferrin did not reduce NEC severity, sepsis, or mortality.

USE OF PREBIOTICS, PROBIOTICS AND SYNBIOTICS IN CLINICAL IMMUNONUTRITION

  • Bengmark Stig
    • 한국식품영양과학회:학술대회논문집
    • /
    • 한국식품영양과학회 2001년도 International Symposium on Food,Nutrition and Health for 21st Century
    • /
    • pp.187-231
    • /
    • 2001
  • It is a recent observation that about 80 per cent of the body's immune system is localized in the gastrointestinal tract. This explains to a large extent why eating right is important for the modulation the immune response and prevention of disease. I addition it is increasingly recognized that the body has an important digestive system also in the lower gastrointestinal tract where numerous important substances are released by microbial enzymes and absorbed. Among these substances are short chain fatty acids, amino acids, various carbohydrates, polyamines, growth factors, coagulation factors, and many thousands of antioxidants, not only traditional vitamins but numerous flavonoids, carotenoids and similar plant- and vegetable produced antioxidants. Also consumption of health-promoting bacteria (probiotics) and vegetable fibres (prebiotics) from numerous sources are known to have strong health-promoting influence. It has been calculated that the intestine harbours about 300 000 genes, which is much more than the calculated about 60000 for the rest of the human body, indicating a till today totally unexpected metabolic activity in this part of the GI tract. There are seemingly several times more active enzymes in the intestine than in the rest of the body, ready to release hundred thousand or more of substances important for our health and well-being. In addition do the microbial cells produce signal molecules similar to cytokines but called bacteriokines and nitric oxide, with provide modulatory effects both on the mucosal cells, the mucosa-associated lymphoid system (MALT) and the rest of the immune system. Identification of various fermentation products, and often referred to as synbiotics, studies of their role in maintaining health and well-being should be a priority issue during the years to come.

  • PDF