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Introduction
The human gastrointestinal tract harbors approximately 1014 microorganisms [1]. The gut microbiota, known

as the second genome, plays key roles in host biological processes such as nutrient [2] and drug [3] metabolism,
defense against pathogens [4], and maintenance of gut barrier function [5] and immune homeostasis [6, 7]. The
most prevalent bacteria in the human gut are Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria, and
Verrucomicrobia, which together account for over 90% of the gut microbial community [8]. Of these, the most
common phyla, Firmicutes and Bacteroidetes, have a major influence on maintaining host health. 

A healthy gut microbiota is characterized by diversity, stability, resilience, and symbiosis with the host [9].
However, exposure of the host to various factors such as antibiotics, poor diet, infection, and smoking, can cause
an imbalance known as dysbiosis in the structure of the gut microbiota [10-14]. Antibiotic use reduces alpha
diversity in the gut microbiota [10, 11]. Intervention with a Western diet for 7 months can cause gut dysbiosis, as
indicated especially by decreased Bifidobacterium spp. in mice [12]. In addition, intranasal inoculation of the
SARS-CoV-2 virus induces gut microbiota dysbiosis in mice, causing them to exhibit increased relative
abundances of Akkermansiaceae, Proteobacteria, and Escherichia-Shigella [13]. Smokers reportedly have a higher
abundance of Bacteroidetes, with decreased Firmicutes and Proteobacteria compared with non-smokers [14].

Gut microbiota dysbiosis can be related to gastrointestinal as well as brain, liver, and lung diseases [15].
Recently, there have been reports that lung diseases, such as COPD, asthma, lung cancer, and lung fibrosis are
associated with gut microbiota dysbiosis [16]. Notably, COPD is a severe, persistent airway and lung disease; the
effectiveness of current treatments is limited and warrants the need for further research on potential therapeutic
options [17-19]. This review summarizes the findings of existing research on the association between gut
microbiota dysbiosis and the etiology or pathogenesis of COPD, as well as the regulation of the gut microbiota for
COPD treatment. 

Gut–Lung Axis
The gut microbiome interacts by establishing an axis between several organs, including the brain, kidney, liver,

bone, and heart [20]. Several studies have proposed the gut–lung axis to be a bi-directional connection between
the gut and lungs. Approximately 50% of adult patients with inflammatory bowel disease (IBD) and 33% of
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revealed the gut–lung axis to be a bidirectional communication system. Cigarette smoke, a major
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provide a basis for using gut microbiota in therapeutic strategies against COPD. Our review also
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transplantation could assist therapeutic approaches targeting the gut microbiota to alleviate COPD. 
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patients with irritable bowel syndrome (IBS) also showed respiratory symptoms, such as dyspnea, cough, asthma
attacks, and waking up at night due to shortness of breath or coughing during the previous year [21, 22]. Additionally,
patients with very severe COPD or uncontrolled asthma show a higher gastrointestinal symptom score than
patients with mild COPD or well-controlled asthma, suggesting that the severity of lung disease is associated with
the severity of gut disease [23]. Moreover, gut microbiota-depleted mice are more susceptible to lung infections,
pointing to a protective role of the gut microbiota [24, 25]. Interestingly, bacterial and viral respiratory infections
in the lungs of mice lead to gut microbiota dysbiosis [26-28]. In this section, we review the communication of the
gut–lung axis, focusing mainly on the gut microbial metabolites, bacterial translocation, and immune cell
modulation via mesenteric lymph nodes (MLNs) and bloodstream.

Gut Microbial Metabolites
Microbiota-accessible carbohydrates (MACs) are complex plant carbohydrates that cannot be completely

absorbed in the small intestine, and reach the large intestine for use by microorganisms [29]. Short-chain fatty
acids (SCFAs), such as butyrate, acetate, and propionate are major metabolic products of MAC fermentation [29].
SCFAs exert beneficial effects on energy metabolism, gut barrier function, and immune regulation [30].
Moreover, SCFAs enhance gut barrier integrity by increasing mucin production and upregulating the expression
of tight junction protein [31-35]. In particular, butyrate has been found to upregulate the expression of claudin-1,
claudin-3, claudin-4, occludin and ZO-1 [33-35], while downregulating the expression of claudin-2 to strengthen
the epithelial barrier integrity in epithelial cells [32]. Sodium butyrate improved the gut permeability and
increased protein expression of mucin-2 protein, as well as the mRNA expression of tight junction proteins
through the activation of GPR109A in a 2,4,6-trinitrobenzene sulfonic acid-induced mouse IBD model [36]. SCFAs
regulate the activation, recruitment, and differentiation of immune cells, including neutrophils, macrophages,
dendritic cells, and T lymphocytes. They are also associated with various lung diseases such as COPD, and asthma
[37-39]. In addition, SCFAs are involved in airway epithelial dysfunction. Butyrate and propionate treatment
restored airway epithelial dysfunction and increased the expression of ZO-1 in human bronchial epithelial cells
16HBE14o- [40]. The airway epithelial barrier dysfunction is closely associated with COPD pathogenesis, and
therefore, SCFAs may help alleviate the symptoms of this disease. 

Bacterial Translocation
Bacterial translocation is the process by which bacteria and bacterial products transit from the gastrointestinal

tract to extra-intestinal sites, including the MLNs, bloodstream, and distant organs [41]. In a healthy state, the
epithelial cell layer and tight junction protein form the gut barrier to protect against antigens, pathogens, and toxins.

Impaired gut integrity increases the permeability of the gut barrier, facilitating bacterial translocation, which
has been observed in several lung diseases [42, 43]. Exposure to cigarette smoke for 10 weeks (5 days a week)
significantly increased the bacterial translocation rate in the MLNs [44]. Furthermore, lung microbiota in the
sepsis model showed increased relative abundance in certain species belonging to the Enterobacteriaceae family
and Enterococcus faecalis, which are normally present in the gut microbiota [45]. 

Lipopolysaccharide (LPS), a major component of gram-negative bacteria, is associated with the development of
several diseases by increasing the permeability of the gut barrier [46, 47]. Germ-free mice showed relatively low
LPS concentration in the lungs, but this is reversed by colonization with the gram-negative bacterium Bacteroides
thetaiotaomicron, suggesting LPS translocation from gut to lung [48]. Mice receiving antibiotic treatment showed
an impaired immune response to the respiratory influenza A virus, which was reversed by intrarectal LPS
inoculation [49]. These studies suggest that bacterial products from bacterial translocation could affect immune
responses via various regulatory mechanisms.

Immune Cell Modulation
The gut microbiota modulates lung immunity by regulating innate and adaptive immune responses. An

antibiotic-induced gut microbiota suppression model showed an altered immune response. Mice treated with
antibiotics showed impaired function of lung dendritic cells, which then exhibit low macrophage-inducible C-
type lectin expression [50]. Dendritic cell dysfunction contributes to the increased susceptibility to Mycobacterium
tuberculosis infection as a result of decreased activation of naïve CD4+ T cells. Another study showed that the
administration of antibiotics induced gut microbiota dysbiosis, which causes immunosuppression in the lung and
depresses dendritic cell bone marrow progenitors, resulting in the aggravation of lung infection caused by
Pseudomonas aeruginosa [51]. Intrarectal inoculation of LPS reversed the antibiotic-induced impairment of
immune responses, resulting in increased inflammasome activation and dendritic cell migration to the MLNs
following intranasal influenza A virus infection [49]. 

The gut microbiota could modulate immune responses and alleviate lung diseases. Patients with nontuberculous
mycobacterial (NTM) pulmonary disease and NTM-infected mice showed decreased levels of L-arginine in sera.
Moreover, in NTM-infected mice compared to untreated mice, oral administration of L-arginine or fecal microbiota
transplantation (FMT) from L-arginine-treated mice showed enhanced M1 macrophage and protective Th1
responses as well as alteration of gut microbiota, with increased relative abundance of Bifidobacterium, Bilophila,
and unclassified YS2 and decreased relative abundance of Odoribacter, Prevotella, and Akkermansia [52]. Another
study revealed that the administration of novel probiotic Parabacteroides goldsteinii MTS01 improves the symptoms
of COPD by reducing activation of B cell signaling pathway and LPS activity in COPD mice [53]. 
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COPD and Gut Microbiota Dysbiosis
Cigarette smoking, a top risk factor for COPD, has been shown to alter gut microbiota in clinical and preclinical

studies. Interestingly, about 30% of patients with COPD have no history of smoking, suggesting other possible risk
factors for COPD [54]. Recently, dysanapsis, a mismatch of airway tree caliber to lung size, was named as a risk
factor associated with COPD [55]. Gut microbiota is a possible risk factor for COPD etiology and progression, as
gut microbiota dysbiosis has been identified in patients with COPD, and FMT from patients with COPD to mice
aggravated lung function [37]. 

COPD
COPD is a heterogeneous disease ranked as the third leading cause of death worldwide in 2019 [56]. COPD is

characterized by chronic inflammation in the airways and lungs, with increased alveolar macrophages and
neutrophils as well as respiratory symptoms including airway inflammation, emphysema, breathlessness, chronic
cough, and sputum production [57]. The risk factors of COPD include cigarette smoking, exposure to secondhand
smoke, air pollution, ambient particulate matter, and aging [58]. Furthermore, patients with COPD have an
increased risk for comorbidities such as cardiovascular diseases, lung cancer, diabetes, metabolic syndrome,
osteoporosis, anxiety, and depression [59]. COPD is classified by severity into four stages and different medications
are prescribed for treatment based on the stage of progression [60]. 

Current treatment options for COPD include pharmacological and non-pharmacological strategies.
Pharmacological interventions include bronchodilators, anti-inflammatory drugs, and antibiotics, whereas non-
pharmacological interventions include pulmonary rehabilitation, oxygen therapy, and smoking cessation [61].
Until now, COPD treatment has been mainly symptomatic, and no agent can fundamentally cure COPD without
side effects [18]. Therefore, there is an urgent need to elucidate the mechanism of COPD and explore novel
treatment options. 

Association between Gut Microbiota and COPD 
Cigarette smoking induces compositional alterations in the gut microbiota [14, 62, 63]. Compared to the non-

smokers, current smokers showed a reduced ratio of Firmicutes/Bacteroidetes (F/B), decreased relative abundance
of the phyla Firmicutes and Proteobacteria and increased relative abundance of the phylum Bacteroidetes [14].
Another study revealed that the gut microbiota of smokers had a significantly lower relative abundance of
Fusobacteria and Tenericutes compared to that of non-smokers [63]. At the species level, Bacteroides thetaiotaomicron
and Lactobacillus amylovorus were increased, whereas Dialister invisus and Ruminococcus bromii were decreased in
the gut microbiota of smokers. Moreover, patients with COPD exhibited gut microbiota dysbiosis [37, 64, 65]. The
abundance of Streptococcus, Rothia, Romboutsia, and Intestinibacter was reported to be higher, whereas that of
Bacteroides, Roseburia, and Lachnospira was lower in patients with COPD [64]. At the family level, Bifidobacteriaceae,
Eubacteriaceae, Lactobacillaceae, Micrococcaceae, Streptococcaceae, and Veillonellaceae were enriched, whereas
Desulfovibrionaceae, Gastranaerophilaceae, and Selenomonadaceae, along with several uncharacterized families
of Bacilli and Clostridia, were depleted in patients. In addition, changes in the gut microbiota were observed
according COPD stage [37, 65]. For example, the COPD III–IV group had lower levels of Bacteroidetes than the
healthy or COPD I–II group, and higher levels of Firmicutes than the COPD I–II group [37]. The COPD I–II
group had higher levels of Prevotellaceae, whereas the COPD III–IV group had lower levels of Bacteroidaceae and
Fusobacteriaceae than the healthy group. Several preclinical models have shown gut microbiota dysbiosis in
COPD. For example, the COPD group has significantly lower microbial richness and gut microbiota dysbiosis in
rat and mice models [66, 67], and exhibits a lower relative abundance of Allobaculum, Tyzzerela_3, Akkermansia,
and Subdoligranulum, which were positively correlated with body weight and lung function but negatively
associated with the T helper 17 (Th17)/T regulatory cell (Treg) ratio and inflammatory cytokines in the lung [67].
A higher relative abundance of Streptococcus, Marvinbryantia, and Candidatus_Stoquefichus compared to that in
normal mice is negatively associated with body weight and lung function but positively correlated with Th17/Treg
balance and pro-inflammatory cytokines [67]. Disparities exist between preclinical and clinical studies, which
may be due to the limitation of animal models, which cannot accurately reflect the different stages of COPD [68].

FMT was used to confirm the causal direction from the gut microbiota to COPD. Mice with FMT from COPD
III–IV patients showed COPD-associated symptoms and immune responses such as weight loss, high plasma
inflammatory cytokines, BALF immune cell infiltration, airway remodeling, and mucus hypersecretion [37].
Moreover, biomass fuel smoke exposure-induced COPD mice with FMT from patients with COPD for 28 days
showed aggravated lung function compared to the COPD mice which did not receive the FMT [37]. These
findings confirmed that gut microbiota is a causal factor for COPD. In contrast, FMT from healthy mice to COPD
model mice alleviated disease symptoms such as emphysema development and lung inflammation while improving
lung function [38, 53]. Collectively, gut microbiota could be a factor in the development and treatment of COPD. 

Therapeutic Strategies for COPD 
Homeostasis in gut microbiota is one of the potential considerations for the prevention or treatment of COPD.

Dietary supplementation with probiotics, prebiotics, and SCFAs are known to improve gut microbiota homeostasis,
maintain gut barrier integrity, enhance immune function, and exert beneficial effects in lung diseases. In addition,
FMT is one of the potential therapeutic strategies to regulate COPD symptoms by the modulation of gut
microbiota. In the following sections, we will describe several therapeutic strategies for COPD by restoring the gut
microbiota using probiotics, prebiotics, SCFAs, and FMT. 
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Probiotics
Probiotics are living microorganisms that provide important health benefits to the host when administered in

sufficient quantities [69, 70]. In general, probiotics can defend the host against pathogens by regulating luminal
pH, competing for adhesion sites, and producing antimicrobial peptides [71]. In particular, probiotics enhance
gut barrier function by producing SCFAs and by upregulating the expression of tight junction proteins, such as
claudin-1, occludin, ZO-1, and ZO-2 [30, 72]. Furthermore, probiotics affect the immune system via the production
of cytokines and stimulation of immune cells [73]. Administration of probiotics has been shown to improve the
pathogenesis of immune and metabolic diseases, including obesity, diabetes, and IBD [74-76]. 

Probiotics are promising targets for use in preventing and alleviating respiratory diseases, including respiratory
tract infections, asthma, and cystic fibrosis [77-79]. Bifidobacterium animalis subsp. lactis Bl-04 supplementation
for 28 days reduced the nasal lavage virus titer as well as the percentages of virus shedding in nasal secretions in the
volunteers compared to the placebo group [77]. Co-administration of Bifidobacterium lactis Probio-M8
supplementation (3×1010 CFU/day) with conventional therapy Symbicort Turbuhaler synergistically improved
asthma-related symptoms, including lower levels of fractional exhaled nitric oxide and alveolar nitric oxide, and
higher asthma control test score than conventional therapy [78]. Furthermore, Lactobacillus rhamnosus GG
administration for 1 month to children with cystic fibrosis reduced fecal calprotectin, a biomarker of cystic
fibrosis, and recovered gut microbiota dysbiosis [79]. 

Administration of L. rhamnosus for COPD treatment (7 days prior to the COPD induction; thrice a week for 8
weeks) attenuates the inflammatory response and downregulates the expression of transcription factors, such as
NF-κB and STAT3 in cigarette smoking-induced COPD mouse model [80]. Restoring gut microbiota dysbiosis
via the enrichment of depleted microorganisms in disease models may be a significant probiotic target for the
attenuation of COPD. For example, administration of P. goldsteinii, decreased in cigarette smoking-induced COPD
symptoms including weight loss, infiltration of inflammatory cells, increased inflammatory gene expression and
improved lung function [53]. This evidence suggests that the administration of probiotics based on gut microbiota
composition can be an effective therapeutic strategy for improving COPD symptoms.

Prebiotics
Prebiotics are indigestible food components that may produce beneficial effects by selectively stimulating the

growth and/or activity of certain types of bacteria in the colon, to improve the health of an individual [81].
Prebiotics include dietary fibers and natural sugars that stimulate the beneficial bacteria in the gut and modulate
the gut microbiota composition [82]. In particular, prebiotics could modulate gut barrier function, immune
responses mediated by immune cells, and epithelial cell function [83]. Furthermore, prebiotics exert beneficial
effects on diarrhea, IBD, obesity, type II diabetes, and colorectal cancer [84]. 

Prebiotics and dietary fiber decrease the incidence of respiratory diseases [85-89]. Prebiotic supplementation
(galactooligosaccharide and polydextrose mixture) showed a significantly lower incidence of respiratory tract
infections compared with the placebo group [86]. Fructooligosaccharide and galactooligosaccharide treatment
attenuated the inflammatory symptoms in the OVA-LPS-induced allergic asthma and acute airway inflammation
in a mice model, resulting in decreased levels of cytokines, leukotrienes, as well as reduced gene expression of
AKT, NLR3, NF-B, and MyD88 [85]. 

A high-fiber (cellulose or pectin) diet for three weeks was shown to have a protective role against the progression of
cigarette smoking-induced emphysema in mice [88]. High dietary fiber is also associated with better lung
function and reduced prevalence of COPD [87]. In addition, the high-fiber diet leads to changes in bone marrow
hematopoiesis, particularly by enhancing the generation of Ly6c− patrolling monocytes in mice with influenza
infection [90]. The number of macrophages having limited capacity to produce chemokine C-X-C ligand 1 (CXCL1)
in the airways is increased, whereas neutrophil infiltration and tissue damage is decreased. In a prospective cohort
study involving women, 10 years of high dietary fiber intake is negatively correlated with COPD risk [89].
Therefore, prebiotics could be a potential treatment option for patients with COPD. 

SCFAs
Oral administration of SCFAs or increased levels in the colon is associated with the attenuation of lung diseases,

including allergic asthma, lung fibrosis, and COPD [91-93]. For example, one-year-old children with high fecal
SCFAs (butyrate and propionate) showed less prevalence of atopic sensitization and development of asthma
between the ages of 3 and 6 years [91].

Low levels of SCFAs are found in the particulate matter-induced COPD rat model in proximal colon contents
[66]. Consistent with preclinical studies, the levels of acetic acid, isobutyric acid, and isovaleric acid were
decreased in patients with COPD III–IV but not in the group with COPD I–II compared to the healthy group,
suggesting a negative association between the severity of COPD and lower levels of SCFAs [37]. Increased levels of
SCFAs are also associated with the attenuation of COPD symptoms. For example, animal models with high
concentrations of SCFAs by FMT or a high-fiber diet could protect against lung inflammation and emphysema
[38]. Oral administration of SCFAs (acetate, propionate, and butyrate) for 3 weeks can decrease the inflammatory
response and emphysema in COPD mice. Although the mechanism and efficacy of SCFAs on COPD remain to be
established by further studies, these results suggest that SCFA intake may confer a positive effect in COPD therapy.

Emerging studies have shown that SCFA supplementation modulates the immune response in respiratory
diseases. Butyrate supplementation with drinking water reduced the expression of neutrophil-attracting chemokine
CXCL1 in lung macrophages, resulting in prolonged survival and reduced clinical score against influenza infection
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[90]. Butyrate and propionate treatment inhibited IgE/antigen-induced mast cell degranulation by modulation of
HDAC activity in human and mouse mast cells, but not GPR41, GPR43, or peroxisome proliferator-activated
receptors [94]. Notably, butyrate treatment downregulated the key genes of mast cell activation, such as Bruton’s
tyrosine kinase (BTK), spleen tyrosine kinase (SYK), and Linker for Activation of T cells (LAT). Propionate
treatment protects against allergic airway inflammation by enhancing dendritic cell hematopoiesis in the bone
marrow, depending on G protein-coupled receptor 41, and the increased dendritic cell precursor is subsequently
impaired in its ability to induce T helper type 2 cell differentiation in mice [95]. Acetate in drinking water also
suppressed allergic airway disease in mice by promoting Treg numbers and function [96]. These results suggest
that SCFAs alleviate COPD symptoms by regulating the immune response. 

FMT 
FMT is a method used to transfer microorganisms in stool samples from a donor to a recipient to directly alter

the gut microbiota of the recipient [97] and normalize the gut microbiota composition. FMT is widely accepted as
a safe and successful treatment for Clostridioides difficile infection [98]. 

Various studies also have suggested that FMT is effective in COPD. FMT from healthy mice to smoking- and
poly I:C-induced COPD mice decreased the severity of emphysema, indicating decreased mean linear intercept
and apoptosis [38]. COPD mice receiving FMT from normal mice had significantly ameliorated COPD symptoms,
including body weight change, BALF cell infiltration, and lung function [38]. In addition, a combination of FMT
and a high-fiber diet more potently attenuates lung inflammation. To date, there has been no clinical study on
FMT in COPD, and further studies are needed. Future studies using FMT may provide important evidence for
understanding the role of gut microbiota in COPD and its potential as a treatment strategy.

Conclusion
COPD is a chronic lung disease with high morbidity. However, the paucity of safe and effective treatments

warrants new treatment approaches to resolve COPD without side effects and severe sequelae. Emerging research
has emphasized the role of the gut–lung axis in respiratory diseases, including allergic asthma, lung fibrosis, and
COPD. To develop an effective therapy for COPD, consideration of the gut microbiota may be an effective
approach. In this review, we discussed the gut–lung axis focusing primarily on the gut microbial metabolites,
bacterial translocation, and immune cell modulation. We then summarized the association between the gut
microbiota and COPD, finally suggesting probiotics, prebiotics, SCFAs, and FMT as promising therapeutic agents
for COPD. Future studies are required to elucidate the exact mechanism and therapeutic efficacy of restoring gut
microbiota in association with COPD as well as other inflammatory conditions of the lung.
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