• Title/Summary/Keyword: Pre-heating heat exchanger

Search Result 8, Processing Time 0.026 seconds

Experimental Study of Condensation Heat Transfer in Pre-heating Exchanger to the Type of Hydrophilic Surface Treatment (친수 표면처리 종류에 따른 공기 예열 열교환기의 응축 열전달 실험적 연구)

  • Seok, Sungchul;Chung, Tae-Yong;Chin, Donghoon;Hwang, Seungsik;Choi, Gyuhong;Park, Jaewon
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.237-238
    • /
    • 2012
  • Recently, an energy-saving due to the energy utilisation efficiency enhancement is important. In order to improve the heat efficiency of the general residential boiler, We performed an experiment of condensation heat transfer to air pre-heat exchanger adhered to the condensing boiler. In this research, We analyze the heat transfer performance through the hydrophilic surface treatment(plasma, etching). The results of the research, On plasma and etching treated surface, Overall heat transfer coefficient is displayed the tendency to increase.

  • PDF

A Study on Condensation Heat Transfer in Air Pre-heating Heat Exchanger using Hydrophilic Surface (친수성 표면 처리를 통한 공기 예열 열교환기의 응축 열전달 성능 연구)

  • Park, Jae Won;Hwang, Sueng Sik;Seok, Sung Chul;Shin, Dong Hoon;Chung, Tae Yong;Son, Sueng Gil
    • Journal of Energy Engineering
    • /
    • v.23 no.3
    • /
    • pp.191-197
    • /
    • 2014
  • To increase the heat transfer rate of the air pre-heating heat exchanger used for the condensing boiler, We investigated condensation heat transfer coefficients through plasma surface treatment. The hydrophilic surface showed about 10% increase in heat transfer rate than original plate. It shows that Shah correlation can be used to predict the condensation heat transfer coefficient on the original surface within 10% error range after the compatison between Shah correlation and the condensation heat transfer coefficients measured on the hydrophilic surface and original surface. Therefore, we have shown that Shah correlation is available when designing the air pre-heating heat exchanger using the original surface in this study.

Distribution of Hot Tap Water Load for District Heating Substation with Hot Tap Water 2-Stage Heat Exchanger (급탕 2단열교환방식 지역난방 열사용시설의 급탕부하 분배에 관한 연구)

  • Jeong, Dong-Hwa;Kim, Joo-Wan;Baik, Young-Jin;Lee, Young-Soo;Chung, Dae-Hun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.4
    • /
    • pp.297-302
    • /
    • 2011
  • According to the standards for district heating substation established by Korea District Heating Corporation, water heating supply systems at over 150 Mcal/h capacity must employ the 2-stage heat exchanger that improves the system efficiency by reusing the heat included in the return water of district heating system already used for space heating. In this paper, the operating characteristics of the system in accordance with the load distribution of two heat exchangers for pre-heating and re-heating cold city water are investigated. The results including mass flow rate, return temperature etc. help to manage district heating system economically.

A Study on the Performance Characteristics of a Heat Pump System using Stack Wast Heat in Fuel Cell Vehicles (스택 폐열을 이용한 연료전지 자동차용 열펌프 시스템의 성능 특성에 관한 연구)

  • Jeon, Byungyong;Ko, Wonbin;Park, Youn Cheol
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.8
    • /
    • pp.325-330
    • /
    • 2016
  • This study was conducted to develop a heating system for a fuel cell-driven electric vehicle. The system consists of a compressor, an expansion device and three heat exchangers. A conventional air source heat exchanger is used as primary heat exchanger of the system, and an additional water source heat exchanger is used as a pre-heater to supply heat to the upstream air of the primary heat exchanger. On the other hand, the third heat exchanger consists of a water-to-refrigerant heat exchanger. The heat source of the pre-heater and the water-refrigerant heat exchanger is the waste heat from the fuel cell's stack. In the experiment, the indoor and the outdoor air temperature were fixed, and the compressor speed, EEV opening and waste heat temperature were varied. The results indicate that the $COP_h$ of the proposed system is 3.01 when the system is operating at a 1,200 rpm compressor speed, 50% EEV opening, and $50^{\circ}C$ waste heat source temperature in air pre-heater operation. However, when the system uses a water-refrigerant heat exchanger, the $COP_h$ increases to up to 9.42 at the same compressor speed and waste heat source temperature with 75% EEV openings.

A Study on the Effects of Etching Surface Characteristics on Condensation Heat Transfer in Pre-heating Exchanger (급기 예열 열교환기에서 에칭 표면 특성이 응축 열전달에 미치는 영향에 관한 연구)

  • Seok, Sungchul;Hwang, Seung Sik;Choi, Gyu Hong;Shin, Donghoon;Chung, Tae Yong
    • Journal of Energy Engineering
    • /
    • v.23 no.2
    • /
    • pp.217-222
    • /
    • 2014
  • In order to improve the heat efficiency of the general residential boiler, we performed an experiment of condensation heat transfer to air pre-heating exchanger adhered to the condensing boiler. In this study, surface roughness was imposed on the surface of stainless steel by etching. And in order to evaluate the heat transfer performance on each plate, the counter flow heat exchanger fabricated with polycarbonate in used. As a result, on etching treated plate's overall heat transfer coefficient is higher than the original plate. And etching treated plate during 60 seconds with etchant is the to average 15% compared to bare stainless steel. And we studied the heat transfer enhancement factor through the analysis of surface characteristics using AFM.

Development and Fabrication of Heating and Water Sparging Remediation System (HWSRS) for DNAPL-contaminated Groundwater Treatment

  • Lee, Ju-Won;Park, Won-Seok;Gong, Hyo-Young;Lee, Ae-Ri;Kim, Da-Eun;Baek, Seung-Chon;Lee, Jong-Yeol
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.6
    • /
    • pp.32-37
    • /
    • 2013
  • The scope of this study was to develop, design, and build an ex-situ remediation system of using the heating and water sparging treatment for the highly volatile DNAPL (Dense Non-Aqueous Phase Liquid) contaminated groundwater, and to conduct pilot testing at the site contaminated with DNAPL. The TCE (Trichloroethylene) removal was at the highest rate of 94.6% with the water sparging at $70^{\circ}C$ in the lab-scale test. The pilot-scale remediation system was developed, designed, and fabricated based on the results of the lab-scale test conducted. During the pilot-scale testing, DNAPL-contaminated groundwater was detained at heat exchanger for the certain period of time for pre-heating through the heat exchanger using the thermal energy supplied from the heater. The heating system supplies thermal energy to the preheated DNAPL-contaminated groundwater directly and its highly volatile TCE, $CCl_4$ (Carbontetrachloride), Chloroform are vaporized, and its vaporized and treated water is return edback to the heat exchanger. In the pilot testing the optimum condition of the HWSRS was when the water temperature at the $40^{\circ}C$ and operated with water sparging concurrently, and its TCE removal rate was 90%. The efficiency of the optimized HWSRS has been confirmed through the long-term performance evaluation process.

Natural Convection Heat Transfer of an Inclined Helical Coil in a Duct (기울어진 덕트 내 헬리컬 코일의 자연대류 열전달)

  • Park, Joo-Hyun;Chung, Bum-Jin
    • Journal of Energy Engineering
    • /
    • v.23 no.2
    • /
    • pp.13-20
    • /
    • 2014
  • The natural convection heat transfers of a helical coil in a duct were measured experimentally varying the inclination. To achieve high Rayleigh number, mass transfer experiments instead of heat transfer experiments were performed based upon the analogy. The $Ra_D$ was fixed to $4.55{\times}10^6$. The turn numbers were 1~10. the pitch to diameter ratio were 1.3~5, and the inclination of the helical coil $0^{\circ}{\sim}90^{\circ}$. The measured $Nu_D$ for a single turn of the helical coil was very close to that from McAdams heat transfer correlation for a horizontal cylinder. The heat transfers of the helical coil were varied by the pith, number of turns, and duct height in a complex manner showing the velocity, chimney, and pre-heating effects. The results of the study contributes to the phenomenological analyses of the natural convection heat transfer of a compact heat exchanger.

Heat Exchange Performance of Improved Heat Recovery System (개량형 열회수 시스템의 열교환 성능)

  • Suh, Won-Myung;Yoon, Yong-Cheol;Kwon, Jin-Keun
    • Journal of Bio-Environment Control
    • /
    • v.12 no.3
    • /
    • pp.107-113
    • /
    • 2003
  • This study was carried out to improve the performance of pre-developed heat recovery devices attached to exhaust-gas flue connected to combustion chamber of greenhouse heating system. Four different units were compared in the aspect of heat recovery performance; A-, B-, and C-types are exactly the same with the old ones reported in previous studies. D-type newly developed in this experiment is mainly different with the old ones in its heat exchange area and tube thickness. But airflow direction(U-turn) and pipe arrangement are similar with previous three types. The results are summarized as follows; 1. System performances in the aspect of heat recovery efficiency were estimated as 42.2% for A-type, 40.6% for B-type, 54.4% for C-type, and 69.2% for D-type. 2. There was not significant improvement of heat recovering efficiency between two different airflow directions inside the heat exchange system. But considering current technical conditions, straight air flow pattern has more advantage than hair-pin How pattern (U-turn f1ow). 3. The main factors influencing on heat recovery efficiency were presumably verified to be the total area of heat exchange surface, the thickness of ail-flow pipes, and the convective heat transfer coefficient influenced by airflow velocity under the conditions of allowable pipe durability and safety. 4. Desirable blower capacity for each type of heat recovery units were significantly different to each other. Therefore, the optimum airflow capacity should be determined by considering in economic aspect of electricity required together with the optimum heat recovery performance of given heat recovery systems.