DOI QR코드

DOI QR Code

Natural Convection Heat Transfer of an Inclined Helical Coil in a Duct

기울어진 덕트 내 헬리컬 코일의 자연대류 열전달

  • Park, Joo-Hyun (Department of Nuclear Engineering, KyungHee University) ;
  • Chung, Bum-Jin (Department of Nuclear Engineering, KyungHee University)
  • 박주현 (경희대학교 원자력공학과) ;
  • 정범진 (경희대학교 원자력공학과)
  • Received : 2014.04.21
  • Accepted : 2014.05.21
  • Published : 2014.06.30

Abstract

The natural convection heat transfers of a helical coil in a duct were measured experimentally varying the inclination. To achieve high Rayleigh number, mass transfer experiments instead of heat transfer experiments were performed based upon the analogy. The $Ra_D$ was fixed to $4.55{\times}10^6$. The turn numbers were 1~10. the pitch to diameter ratio were 1.3~5, and the inclination of the helical coil $0^{\circ}{\sim}90^{\circ}$. The measured $Nu_D$ for a single turn of the helical coil was very close to that from McAdams heat transfer correlation for a horizontal cylinder. The heat transfers of the helical coil were varied by the pith, number of turns, and duct height in a complex manner showing the velocity, chimney, and pre-heating effects. The results of the study contributes to the phenomenological analyses of the natural convection heat transfer of a compact heat exchanger.

헬리컬 코일이 덕트 내부에 있을 때, 기울기에 따른 자연대류 열전달을 실험적으로 측정하였다. 고부력 조건을 구현하기 위하여 유사성에 기초하여 열전달 실험을 대신하여 물질전달 실험을 수행하였다. RaD 수 $4.55{\times}10^6$에서, 턴(Turn) 수를 1~10, P/D를 1.3~5, 헬리컬 코일의 기울기를 $0^{\circ}{\sim}90^{\circ}$까지 변화시켰다. 헬리컬 코일의 턴 수가 1일 때, 측정된 $Nu_D$ 수는 McAdams의 수평관 자연대류 열전달 상관식과 거의 일치하였다. 기울어진 덕트 내 헬리컬 코일의 자연대류 열전달은 피치, 턴 수, 덕트 높이에 따라 복합적으로 변화하였고 이는 속도 효과, 굴뚝 효과, 예열 효과로 분석되었다. 본 연구의 결과는 Compact heat exchanger에서의 자연대류 열전달에 대한 현상학적 분석에 기여한다.

Keywords

References

  1. J. S. Jayakumara,b*., S. M. Mahajaia., J. C. mandala., P. K. Vijayanb., Rohidas Bhoia., Experimental and CFD estimation of heat transfer in helically coiled heat exchangers, Chemical engineering research and design, 2008, 86, 221-232. https://doi.org/10.1016/j.cherd.2007.10.021
  2. D.G. Prabhanjan., G. S. V. Raghavan. and T. J. Rennie., COMPARISON OF HEAT TRANSFER RATES BETWEEN A STRAIGHT TUBE HEAT EXCHANGER AND A HELICALLY COILED HEAT EXCHANGER, International Communications in Heat and Mass Transfer, 2002, 29, 185-191.
  3. Vimal kumar., Supreet Saini., Manish Sharma., K. D. P. Nigam*., Pressure drop and heat transfer study in tube-in-tube helical heat exchanger, Chemical Engineering Science, 2006, 61, 4403-4416 https://doi.org/10.1016/j.ces.2006.01.039
  4. G. YANG., Z. F. DONG. and M. A. EBADIAN., Laminar forced convection in a helicoidal pipe with finite pitch, 1995, International Journal of Heat and Mass Transfer, 1995, 38, 853-862. https://doi.org/10.1016/0017-9310(94)00199-6
  5. T. H. Ko., Thermodynamic analysis of optimal curvature ratio for fully developed laminar forced convection in a helical coiled tube with uniform heat flux, International Journal of Thermal Sciences, 2006, 45, 729-737. https://doi.org/10.1016/j.ijthermalsci.2005.08.007
  6. T. H. Ko., Numerical Investigation of Laminar Forced Convection and Entropy Generation in a Helical Coil with Constant Wall Heat Flux, Numerical Heat Transfer, 2006, 49, 257-278. https://doi.org/10.1080/10407780500343707
  7. Heo, J. H. and Chung, B, J., Natural Convection Heat Transfer on the Outer Surface of Inclined Cylinders, Chemical Engineering Science, 2012, 73, 366-372 https://doi.org/10.1016/j.ces.2012.02.012
  8. Sparrow, E. M. and Niethammer, J.E., Effect of Vertical Separation Distance and Cylinder-to-Cylinder Temperature Imbalance on Natural Convection for a Pair of Horizontal Cylinders, Trans. of the ASME, 1981, 103, 638-644 https://doi.org/10.1115/1.3244520
  9. A. Auletta, O. Manca, B. Morrone, V. Naso., "Heat transfer enhancement by the chimney effect in a vertical isoflux channel," Int. J. Heat Mass Transfer, 2001, 44, 4345-4357. https://doi.org/10.1016/S0017-9310(01)00064-3
  10. S. E. Haaland and E. M. Sparrow., "Solutions for the channel plume and the parallel-walled chimney," Numerical Heat Transfer, 1983, 6, 155-172.
  11. Levich. V. G., Physicochemical Hydrodynamics, Prentice-Hall, Englewood Cliffs, N.J., 1962.
  12. Selman, J.R., Tobias, C. W., Mass Transfer Measurement by the Limiting Current Technique, Adv. Chem. Eng., 1978, 10, 211-318. https://doi.org/10.1016/S0065-2377(08)60134-9
  13. Fenech, E.J., Tobias, C.W., Electrochim. Acta, 1960 2, 311 https://doi.org/10.1016/0013-4686(60)80027-8
  14. Ko, S. H., Moon, K. W. and Chung, B. J., "Applications of Electroplating Method for Heat Transfer Studies Using Analogy Concept," Nuclear Engineering and Technology, 2006, 38, 251-258.
  15. Kang, K. u. and Chung, B. J., "The Effects of the Anode Size and Position on the Limiting Currents of Natural Convection Mass Transfer Experiments of Natural Convecti3on Mass Transfer Experiments in a Vertical Pipe," Trans. of the KSME(B), 2010, 34, 1-8. https://doi.org/10.3795/KSME-B.2010.34.1.1
  16. Fenech, E. J. and Tobias, C. W., "Mass transfer by free convection at horizontal electrode", Electrochimica Acta, 1960, 2, 311-325 https://doi.org/10.1016/0013-4686(60)80027-8
  17. McAdams WH. Heat Transmission, 3rd edn. McGraw-Hill, NY, 1954, 175-177
  18. Heo, J. H. and Chung, B, J., Influence of Helical Tube Dimensions on Open Channel Natural Convection Heat Transfer, International Journal of Heat and Mass Transfer, 2012, 55, 2829-2834 https://doi.org/10.1016/j.ijheatmasstransfer.2012.02.043