Heat Exchange Performance of Improved Heat Recovery System

개량형 열회수 시스템의 열교환 성능

  • Suh, Won-Myung (Heat Exchange Performance of Improved Heat Recovery System) ;
  • Yoon, Yong-Cheol (Heat Exchange Performance of Improved Heat Recovery System) ;
  • Kwon, Jin-Keun (Heat Exchange Performance of Improved Heat Recovery System)
  • 서원명 (경상대학교 농업시스템 공학부(농업생명과학연구원)) ;
  • 윤용철 (경상대학교 농업시스템 공학부(농업생명과학연구원)) ;
  • 권진근 (경상대학교 농업시스템 공학부(농업생명과학연구원))
  • Published : 2003.09.01

Abstract

This study was carried out to improve the performance of pre-developed heat recovery devices attached to exhaust-gas flue connected to combustion chamber of greenhouse heating system. Four different units were compared in the aspect of heat recovery performance; A-, B-, and C-types are exactly the same with the old ones reported in previous studies. D-type newly developed in this experiment is mainly different with the old ones in its heat exchange area and tube thickness. But airflow direction(U-turn) and pipe arrangement are similar with previous three types. The results are summarized as follows; 1. System performances in the aspect of heat recovery efficiency were estimated as 42.2% for A-type, 40.6% for B-type, 54.4% for C-type, and 69.2% for D-type. 2. There was not significant improvement of heat recovering efficiency between two different airflow directions inside the heat exchange system. But considering current technical conditions, straight air flow pattern has more advantage than hair-pin How pattern (U-turn f1ow). 3. The main factors influencing on heat recovery efficiency were presumably verified to be the total area of heat exchange surface, the thickness of ail-flow pipes, and the convective heat transfer coefficient influenced by airflow velocity under the conditions of allowable pipe durability and safety. 4. Desirable blower capacity for each type of heat recovery units were significantly different to each other. Therefore, the optimum airflow capacity should be determined by considering in economic aspect of electricity required together with the optimum heat recovery performance of given heat recovery systems.

본 연구에서는 온실의 온풍식 난방시스템 연통에 장착할 수 있는 폐열 회수기의 성능 개선을 목적으로 기 설계된 세 가지 열교환 장치와 기존의 장치에서 열교환 면적과 파이프의 두께 및 공기흐름 방향을 개량한 새 열교환 장치에 대해 열회수 성능을 실험적으로 비교 분석하였다. 그 결과 기존의 열 교환장치인 A형, B형 및 C형의 열회수 성능은 동일 송풍전입에서 각각 42.2%, 40.6% 및 54.4% 정도였으나 , 새로 개량된 D형은 69.2%로써 가장 현저히 높게 나타났다. 그러나 열회수용 공기의 흐름방향 변화에 따른 열회수 성능 개선효과 (A형 대비 B형)는 없는 것으로 나타나 적정 송풍기 용량이라면 직선형이 공기의 흐름방향 180${\circ}C$ 굴절시키는 헤어핀형보다 효과적인 것으로 판단된다. 결국 열회수 성능은 열회수 시스템의 열교환 면적과 열교환 파이프의 두께 및 풍속에 크게 좌우되는 것으로 나타났다. 따라서, 열교환 파이프의 내구성 등 을 고려하여 기능한 한 범위 내에서 열 교환면적을 증대시키거나 열교환 파이프의 두께를 앓게 하고 풍속을 증대시키는 것이 열회수 성능 개선효과와 직결됨을 알 수 있었다. 그리고 송풍기 용량이 필요이상으로 큰 경우, 소비전력이 많게 되는 등의 문제가 있기 때문에 적정용량 및 제품의 안정성을 고려하여 선택해야 할 것으로 판단되었다.

Keywords

References

  1. Kim Y.J., G.J, Lee, J.W. Shin, Y.S, Yu and J.T. Jang. 1999, Underground hot heating system development using exhaust gas heat in the hot air heater, J. Bio-Env. Con. 8(2):100-103 (in Korean)
  2. Korea Society for Agricultural Machinery, 2001, Agricultural machinery yearbook 2001-2002, p. 114 (in Korean)
  3. Nam, Y.L, 2001. Strategies for the increased corrpetitiveness of horticulture corps, Korean Research Society for Protected Horticulture, p. 99-112 (in Korean)
  4. Suh, W.M., Y.C. Yoon and J.G. Kang 2000, Analysis of heat exchanging performance of heat recovering device attached to exhaust gas duct. J. Bio-Env. Con. 9(4):212-222 (in Korean)
  5. Suh, W.M., Y.C. Yoon and J.G. Kang 2002, Heat exchanging performance as affected by arrangement of heat exchanging pipe, J. Bio.-Env. Con. 11(3):101-107 (in Korean)
  6. Yoon, Y.C., W.M. Suh and J.S. Kim. 2000, Performance analysis of heat recovering device attached to hot-air-heater for greenhouse, J. Bio-Env. Con. 9(1):85-89 (in Korean)