• Title/Summary/Keyword: Pr$\ddot{u}$fer v-multiplication domain

Search Result 6, Processing Time 0.023 seconds

ON CHARACTERIZATIONS OF PRÜFER v-MULTIPLICATION DOMAINS

  • Chang, Gyu Whan
    • Korean Journal of Mathematics
    • /
    • v.18 no.4
    • /
    • pp.335-342
    • /
    • 2010
  • Let D be an integral domain with quotient field K,$\mathcal{I}(D)$ be the set of nonzero ideals of D, and $w$ be the star-operation on D defined by $I_w=\{x{\in}K{\mid}xJ{\subseteq}I$ for some $J{\in}\mathcal{I}(D)$ such that J is finitely generated and $J^{-1}=D\}$. The D is called a Pr$\ddot{u}$fer $v$-multiplication domain if $(II^{-1})_w=D$ for all nonzero finitely generated ideals I of D. In this paper, we show that D is a Pr$\ddot{u}$fer $v$-multiplication domain if and only if $(A{\cap}(B+C))_w=((A{\cap}B)+(A{\cap}C))_w$ for all $A,B,C{\in}\mathcal{I}(D)$, if and only if $(A(B{\cap}C))_w=(AB{\cap}AC)_w$ for all $A,B,C{\in}\mathcal{I}(D)$, if and only if $((A+B)(A{\cap}B))_w=(AB)_w$ for all $A,B{\in}\mathcal{I}(D)$, if and only if $((A+B):C)_w=((A:C)+(B:C))_w$ for all $A,B,C{\in}\mathcal{I}(D)$ with C finitely generated, if and only if $((a:b)+(b:a))_w=D$ for all nonzero $a,b{\in}D$, if and only if $(A:(B{\cap}C))_w=((A:B)+(A:C))_w$ for all $A,B,C{\in}\mathcal{I}(D)$ with B, C finitely generated.

A NEW CHARACTERIZATION OF PRÜFER v-MULTIPLICATION DOMAINS

  • CHANG, GYU WHAN
    • Korean Journal of Mathematics
    • /
    • v.23 no.4
    • /
    • pp.631-636
    • /
    • 2015
  • Let D be an integral domain and w be the so-called w-operation on D. In this note, we introduce the notion of *(w)-domains: D is a *(w)-domain if $(({\cap}(x_i))({\cap}(y_j)))_w={\cap}(x_iy_j)$ for all nonzero elements $x_1,{\ldots},x_m$; $y_1,{\ldots},y_n$ of D. We then show that D is a $Pr{\ddot{u}}fer$ v-multiplication domain if and only if D is a *(w)-domain and $A^{-1}$ is of finite type for all nonzero finitely generated fractional ideals A of D.

POWER SERIES RINGS OVER PRÜFER v-MULTIPLICATION DOMAINS

  • Chang, Gyu Whan
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.2
    • /
    • pp.447-459
    • /
    • 2016
  • Let D be an integral domain, {$X_{\alpha}$} be a nonempty set of indeterminates over D, and $D{\mathbb{[}}\{X_{\alpha}\}{\mathbb{]}_1}$ be the first type power series ring over D. We show that if D is a t-SFT $Pr{\ddot{u}}fer$ v-multiplication domain, then $D{\mathbb{[}}\{X_{\alpha}\}{\mathbb{]}}_{1_{D-\{0\}}}$ is a Krull domain, and $D{\mathbb{[}}\{X_{\alpha}\}{\mathbb{]}}_1$ is a $Pr{\ddot{u}}fer$ v-multiplication domain if and only if D is a Krull domain.

OVERRINGS OF t-COPRIMELY PACKED DOMAINS

  • Kim, Hwan-Koo
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.1
    • /
    • pp.191-205
    • /
    • 2011
  • It is well known that for a Krull domain R, the divisor class group of R is a torsion group if and only if every subintersection of R is a ring of quotients. Thus a natural question is that under what conditions, for a non-Krull domain R, every (t-)subintersection (resp., t-linked overring) of R is a ring of quotients or every (t-)subintersection (resp., t-linked overring) of R is at. To address this question, we introduce the notions of *-compact packedness and *-coprime packedness of (an ideal of) an integral domain R for a star operation * of finite character, mainly t or w. We also investigate the t-theoretic analogues of related results in the literature.

THE w-WEAK GLOBAL DIMENSION OF COMMUTATIVE RINGS

  • WANG, FANGGUI;QIAO, LEI
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.4
    • /
    • pp.1327-1338
    • /
    • 2015
  • In this paper, we introduce and study the w-weak global dimension w-w.gl.dim(R) of a commutative ring R. As an application, it is shown that an integral domain R is a $Pr\ddot{u}fer$ v-multiplication domain if and only if w-w.gl.dim(R) ${\leq}1$. We also show that there is a large class of domains in which Hilbert's syzygy Theorem for the w-weak global dimension does not hold. Namely, we prove that if R is an integral domain (but not a field) for which the polynomial ring R[x] is w-coherent, then w-w.gl.dim(R[x]) = w-w.gl.dim(R).

w-INJECTIVE MODULES AND w-SEMI-HEREDITARY RINGS

  • Wang, Fanggui;Kim, Hwankoo
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.3
    • /
    • pp.509-525
    • /
    • 2014
  • Let R be a commutative ring with identity. An R-module M is said to be w-projective if $Ext\frac{1}{R}$(M,N) is GV-torsion for any torsion-free w-module N. In this paper, we define a ring R to be w-semi-hereditary if every finite type ideal of R is w-projective. To characterize w-semi-hereditary rings, we introduce the concept of w-injective modules and study some basic properties of w-injective modules. Using these concepts, we show that R is w-semi-hereditary if and only if the total quotient ring T(R) of R is a von Neumann regular ring and $R_m$ is a valuation domain for any maximal w-ideal m of R. It is also shown that a connected ring R is w-semi-hereditary if and only if R is a Pr$\ddot{u}$fer v-multiplication domain.