References
- G. W. Chang, Prufer *-multiplication domains, Nagata rings, and Kronecker function rings, J. Algebra 319 (2008), no. 1, 309-319. https://doi.org/10.1016/j.jalgebra.2007.10.010
- G. W. Chang, On characterizations of Prufer v-multiplication domains, Korean J. Math. 18 (2010), no. 4, 335-342.
- G. W. Chang, H. Kim, and J. W. Lim, Integral domains in which every nonzero t-locally principal ideal is t-invertible, Comm. Algebra 41 (2013), no. 10, 3805-3819. https://doi.org/10.1080/00927872.2012.678022
- S. El Baghdadi and S. Gabelli, Ring-theoretic properties of PvMDs, Comm. Algebra 35 (2007), no. 5, 1607-1625. https://doi.org/10.1080/00927870601169283
- R. Gilmer, Multiplicative Ideal Theory, Pure and Applied Mathematics, No. 12. Marcel Dekker, Inc., New York, 1972.
- S. Glaz, Commutative Coherent Rings, Lecture Notes in Mathematics, 1371. Springer-Verlag, Berlin, 1989.
- M. Griffin, Some results on v-multiplication rings, Canad. J. Math. 19 (1967), 710-722. https://doi.org/10.4153/CJM-1967-065-8
- E. Houston and M. Zafrullah, On t-invertibility. II, Comm. Algebra 17 (1989), no. 8, 1955-1969. https://doi.org/10.1080/00927878908823829
-
B. G. Kang, Prufer v-multiplication domains and the ring
$R[X]_{N_v}$ , J. Algebra 123 (1989), no. 1, 151-170. https://doi.org/10.1016/0021-8693(89)90040-9 - B. G. Kang, Some questions about Prufer v-multiplication domains, Comm. Algebra 17 (1989), no. 3, 553-564. https://doi.org/10.1080/00927878908823744
- H. Kim and F. Wang, On LCM-stable modules, J. Algebra Appl. 13 (2014), no. 4, 1350133, 18 pp.
- T. G. Lucas, Strong Prufer rings and the ring of finite fractions, J. Pure Appl. Algebra 84 (1993), no. 1, 59-71. https://doi.org/10.1016/0022-4049(93)90162-M
- R. Matsuda, Notes of Prufer v-multiplication rings, Bull. Fac. Sci. Ibaraki Univ. Ser. A No. 12 (1980), 9-15.
- J. L. Mott and M. Zafrullah, On Prufer v-multiplication domains, Manuscripta Math. 35 (1981), no. 1-2, 1-26. https://doi.org/10.1007/BF01168446
- G. Picozza, A note on Prufer semistar multiplication domains, J. Korean Math. Soc. 46 (2009), no. 6, 1179-1192. https://doi.org/10.4134/JKMS.2009.46.6.1179
- J. J. Rotman, An Introduction to Homological Algebra, Pure and Applied Mathematics, 85. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1979.
- P. Samuel, Lectures on unique factorization domains, Notes by M. Pavman Murthy, Tata Institute of Fundamental Research Lectures on Mathematics, No. 30. Tata Institute of Fundamental Research, Bombay, 1964.
- F. Wang, On w-projective modules and w-flat modules, Algebra Colloq. 4 (1997), no. 1, 111-120.
- F. Wang, w-modules over a PVMD, Proc. ISTAEM, Hong Kong, 117-120, 2001.
- F. Wang, Finitely presented type modules and w-coherent rings, J. Sichuan Normal Univ. 33 (2010), 1-9.
- F. Wang and H. Kim, Two generalizations of projective modules and their applications, J. Pure Appl. Algebra 219 (2015), no. 6, 2099-2123. https://doi.org/10.1016/j.jpaa.2014.07.025
- F. Wang and H. Kim, w-injective modules and w-semi-hereditary rings, J. Korean Math. Soc. 51 (2014), no. 3, 509-525. https://doi.org/10.4134/JKMS.2014.51.3.509
- F. Wang and J. Zhang, Injective modules over w-Noetherian rings, Acta Math. Sinica (Chin. Ser.) 53 (2010), no. 6, 1119-1130.
- H. Yin and Y. Chen, w-overrings of w-Noetherian rings, Studia Sci. Math. Hungar. 49 (2012), no. 2, 200-205. https://doi.org/10.1556/SScMath.49.2012.2.1198
- H. Yin, F. Wang, X. Zhu, and Y. Chen, w-modules over commutative rings, J. Korean Math. Soc. 48 (2011), no. 1, 207-222. https://doi.org/10.4134/JKMS.2011.48.1.207
- S. Zhao, F. Wang, and H. Chen, Flat modules over a commutative ring are w-modules, J. Sichuan Normal Univ. 35 (2012), 364-366.
Cited by
- Purity over Prüfer v-multiplication domains 2017, https://doi.org/10.1142/S0219498818501001
- Overrings of Prüfer v-multiplication domains vol.16, pp.08, 2017, https://doi.org/10.1142/S021949881750147X
- A new application of boundary integral behaviors of harmonic functions to the least harmonic majorant vol.2017, pp.1, 2017, https://doi.org/10.1186/s13661-017-0798-5
- Purity over Prüfer v-multiplication domains, II pp.1793-6829, 2018, https://doi.org/10.1142/S0219498818502237
- -Flat Modules and Dimensions vol.25, pp.02, 2018, https://doi.org/10.1142/S1005386718000147
- A homological characterization of Krull domains II pp.1532-4125, 2019, https://doi.org/10.1080/00927872.2018.1524007