DOI QR코드

DOI QR Code

THE w-WEAK GLOBAL DIMENSION OF COMMUTATIVE RINGS

  • WANG, FANGGUI (COLLEGE OF MATHEMATICS AND SOFTWARE SCIENCE SICHUAN NORMAL UNIVERSITY) ;
  • QIAO, LEI (COLLEGE OF MATHEMATICS AND SOFTWARE SCIENCE SICHUAN NORMAL UNIVERSITY)
  • Received : 2014.09.08
  • Published : 2015.07.31

Abstract

In this paper, we introduce and study the w-weak global dimension w-w.gl.dim(R) of a commutative ring R. As an application, it is shown that an integral domain R is a $Pr\ddot{u}fer$ v-multiplication domain if and only if w-w.gl.dim(R) ${\leq}1$. We also show that there is a large class of domains in which Hilbert's syzygy Theorem for the w-weak global dimension does not hold. Namely, we prove that if R is an integral domain (but not a field) for which the polynomial ring R[x] is w-coherent, then w-w.gl.dim(R[x]) = w-w.gl.dim(R).

Keywords

References

  1. G. W. Chang, Prufer *-multiplication domains, Nagata rings, and Kronecker function rings, J. Algebra 319 (2008), no. 1, 309-319. https://doi.org/10.1016/j.jalgebra.2007.10.010
  2. G. W. Chang, On characterizations of Prufer v-multiplication domains, Korean J. Math. 18 (2010), no. 4, 335-342.
  3. G. W. Chang, H. Kim, and J. W. Lim, Integral domains in which every nonzero t-locally principal ideal is t-invertible, Comm. Algebra 41 (2013), no. 10, 3805-3819. https://doi.org/10.1080/00927872.2012.678022
  4. S. El Baghdadi and S. Gabelli, Ring-theoretic properties of PvMDs, Comm. Algebra 35 (2007), no. 5, 1607-1625. https://doi.org/10.1080/00927870601169283
  5. R. Gilmer, Multiplicative Ideal Theory, Pure and Applied Mathematics, No. 12. Marcel Dekker, Inc., New York, 1972.
  6. S. Glaz, Commutative Coherent Rings, Lecture Notes in Mathematics, 1371. Springer-Verlag, Berlin, 1989.
  7. M. Griffin, Some results on v-multiplication rings, Canad. J. Math. 19 (1967), 710-722. https://doi.org/10.4153/CJM-1967-065-8
  8. E. Houston and M. Zafrullah, On t-invertibility. II, Comm. Algebra 17 (1989), no. 8, 1955-1969. https://doi.org/10.1080/00927878908823829
  9. B. G. Kang, Prufer v-multiplication domains and the ring $R[X]_{N_v}$, J. Algebra 123 (1989), no. 1, 151-170. https://doi.org/10.1016/0021-8693(89)90040-9
  10. B. G. Kang, Some questions about Prufer v-multiplication domains, Comm. Algebra 17 (1989), no. 3, 553-564. https://doi.org/10.1080/00927878908823744
  11. H. Kim and F. Wang, On LCM-stable modules, J. Algebra Appl. 13 (2014), no. 4, 1350133, 18 pp.
  12. T. G. Lucas, Strong Prufer rings and the ring of finite fractions, J. Pure Appl. Algebra 84 (1993), no. 1, 59-71. https://doi.org/10.1016/0022-4049(93)90162-M
  13. R. Matsuda, Notes of Prufer v-multiplication rings, Bull. Fac. Sci. Ibaraki Univ. Ser. A No. 12 (1980), 9-15.
  14. J. L. Mott and M. Zafrullah, On Prufer v-multiplication domains, Manuscripta Math. 35 (1981), no. 1-2, 1-26. https://doi.org/10.1007/BF01168446
  15. G. Picozza, A note on Prufer semistar multiplication domains, J. Korean Math. Soc. 46 (2009), no. 6, 1179-1192. https://doi.org/10.4134/JKMS.2009.46.6.1179
  16. J. J. Rotman, An Introduction to Homological Algebra, Pure and Applied Mathematics, 85. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1979.
  17. P. Samuel, Lectures on unique factorization domains, Notes by M. Pavman Murthy, Tata Institute of Fundamental Research Lectures on Mathematics, No. 30. Tata Institute of Fundamental Research, Bombay, 1964.
  18. F. Wang, On w-projective modules and w-flat modules, Algebra Colloq. 4 (1997), no. 1, 111-120.
  19. F. Wang, w-modules over a PVMD, Proc. ISTAEM, Hong Kong, 117-120, 2001.
  20. F. Wang, Finitely presented type modules and w-coherent rings, J. Sichuan Normal Univ. 33 (2010), 1-9.
  21. F. Wang and H. Kim, Two generalizations of projective modules and their applications, J. Pure Appl. Algebra 219 (2015), no. 6, 2099-2123. https://doi.org/10.1016/j.jpaa.2014.07.025
  22. F. Wang and H. Kim, w-injective modules and w-semi-hereditary rings, J. Korean Math. Soc. 51 (2014), no. 3, 509-525. https://doi.org/10.4134/JKMS.2014.51.3.509
  23. F. Wang and J. Zhang, Injective modules over w-Noetherian rings, Acta Math. Sinica (Chin. Ser.) 53 (2010), no. 6, 1119-1130.
  24. H. Yin and Y. Chen, w-overrings of w-Noetherian rings, Studia Sci. Math. Hungar. 49 (2012), no. 2, 200-205. https://doi.org/10.1556/SScMath.49.2012.2.1198
  25. H. Yin, F. Wang, X. Zhu, and Y. Chen, w-modules over commutative rings, J. Korean Math. Soc. 48 (2011), no. 1, 207-222. https://doi.org/10.4134/JKMS.2011.48.1.207
  26. S. Zhao, F. Wang, and H. Chen, Flat modules over a commutative ring are w-modules, J. Sichuan Normal Univ. 35 (2012), 364-366.

Cited by

  1. Purity over Prüfer v-multiplication domains 2017, https://doi.org/10.1142/S0219498818501001
  2. Overrings of Prüfer v-multiplication domains vol.16, pp.08, 2017, https://doi.org/10.1142/S021949881750147X
  3. A new application of boundary integral behaviors of harmonic functions to the least harmonic majorant vol.2017, pp.1, 2017, https://doi.org/10.1186/s13661-017-0798-5
  4. Purity over Prüfer v-multiplication domains, II pp.1793-6829, 2018, https://doi.org/10.1142/S0219498818502237
  5. -Flat Modules and Dimensions vol.25, pp.02, 2018, https://doi.org/10.1142/S1005386718000147
  6. A homological characterization of Krull domains II pp.1532-4125, 2019, https://doi.org/10.1080/00927872.2018.1524007