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THE w-WEAK GLOBAL DIMENSION OF

COMMUTATIVE RINGS

Fanggui Wang and Lei Qiao

Abstract. In this paper, we introduce and study the w-weak global
dimension w-w.gl.dim(R) of a commutative ring R. As an application, it
is shown that an integral domain R is a Prüfer v-multiplication domain
if and only if w-w.gl.dim(R) 6 1. We also show that there is a large
class of domains in which Hilbert’s syzygy Theorem for the w-weak global
dimension does not hold. Namely, we prove that if R is an integral domain
(but not a field) for which the polynomial ring R[x] is w-coherent, then
w-w.gl.dim(R[x]) = w-w.gl.dim(R).

1. Introduction

Recall that a Prüfer domain is an integral domain in which every finitely
generated ideal is invertible. It is well-known that the concept of Prüfer do-
mains has played a central role in the development of the classical ideal theory.
An important generalization of the Prüfer domain notion is that of a Prüfer
v-multiplication domain (PVMD). This notion comes from multiplicative ideal
theory, and various ideal-theoretic properties of it have been considered by
many authors, see for example [1, 2, 4, 7, 9, 10, 13, 14, 15]. From the homolog-
ical algebra point of view, Prüfer domains are exactly the integral domains of
weak global dimension at most one. The original motivation for this work is to
provide a homological algebra characterization of PVMDs. To do so, we need
the notion of a w-flat module. Recently, modules of this type have received
attention in several papers in the literature, see for example [3, 11, 21, 22].

Throughout, R denotes a commutative ring with an identity element and all
modules are unitary.

Now, we review some definitions and notation. Let J be an ideal of R.
Following [25], J is called a Glaz-Vasconcelos ideal (a GV-ideal for short) if J is
finitely generated and the natural homomorphism ϕ : R → J∗ = HomR(J,R) is
an isomorphism. Note that the set GV(R) of GV-ideals of R is a multiplicative
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system of ideals of R. Let M be an R-module. Define

torGV(M) = {x ∈ M | Jx = 0 for some J ∈ GV(R)}.

Thus torGV(M) is a submodule of M . Now M is said to be GV-torsion (resp.,
GV-torsionfree) if torGV(M) = M (resp., torGV(M) = 0). A GV-torsionfree
module M is called a w-module if Ext1R(R/J,M) = 0 for any J ∈ GV(R). Then
projective modules and reflexive modules are both w-modules. In the recent
paper [26], it was shown that all flat modules are w-modules. Let w-Max(R)
denote the set of w-ideals of R maximal among proper integral w-ideals of R
and we call m ∈ w-Max(R) a maximal w-ideal of R. Then by [25, Proposition
3.8] every maximal w-ideal is prime. Notice that an R-module M is GV-torsion
if and only if Mm = 0 for all m ∈ w-Max(R) (see [23, Theorem 2.7]). For any
GV-torsionfree module M ,

Mw = {x ∈ E(M) | Jx ⊆ M for some J ∈ GV(R)}

is a w-submodule of E(M) containing M and is called the w-envelope of M ,
where E(M) denotes the injective hull (or envelope) of M . It is clear that a
GV-torsionfree module M is a w-module if and only if Mw = M . Let M and
N be R-modules and let f : M → N be a homomorphism. Following [20],
f is called a w-monomorphism (resp., w-epimorphism, w-isomorphism) if fm :
Mm → Nm is a monomorphism (resp., an epimorphism, an isomorphism) for all
m ∈ w-Max(R). A sequence A → B → C of modules and homomorphisms is
called w-exact if the sequence Am → Bm → Cm is exact for all m ∈ w-Max(R).
An R-module M is said to be of finite type if there exists a finitely generated
free R-module F and a w-epimorphism g : F → M . Similarly, an R-module
M is said to be of finitely presented type if there exists a w-exact sequence
F1 → F0 → M → 0, where F1 and F0 are finitely generated free. An R-module
M is called w-coherent if M is of finite type and each finite type submodule of
M is of finitely presented type; a ring R is called w-coherent if R is w-coherent
as an R-module. Also it is shown that a ring R is w-coherent if and only if
every finitely generated ideal of R is of finitely presented type; if and only if
every finite type submodule of a free module is of finitely presented type [20,
Theorem 3.1].

The notion of w-flat modules appeared first in [18] when R is a domain and
was extended to arbitrary commutative rings in [11]. Recall that an R-module
M is called a w-flat module if the induced map 1 ⊗ f : M

⊗

R A → M
⊗

R B
is a w-monomorphism for any w-monomorphism f : A → B. Certainly, both
flat modules and GV-torsion modules are w-flat. Another example of a w-flat
module is a so-called w-projective module. Let M be an R-module and set
L(M) = (M/torGV(M))w. Recall from [21] that M is called w-projective if
Ext1R(L(M), N) is GV-torsion for every torsionfree w-module N . Then every
w-projective module is w-flat (see [22, Proposition 2.4]). For easy reference, we
list some characterizations of w-flat modules.
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Proposition 1.1 (cf. [11, Theorem 3.3]). The following statements are equiv-

alent for an R-module M .

(1) M is w-flat.
(2) Mm is a flat Rm-module for all m ∈ w-Max(R).

(3) TorR1 (M,N) is GV-torsion for all R-modules N .

(4) TorRn (M,N) is GV-torsion for all R-modules N and all n > 1.

We now introduce the notion of w-flat dimension as follows.

Definition. IfM is an R-module, then w-fdR(M) 6 n (w-fd abbreviates w-flat
dimension) if there is a w-exact sequence of R-modules

(⋆) 0 → Fn → · · · → F1 → F0 → M → 0,

where each Fi is a w-flat module. The w-exact sequence (⋆) is called a w-
flat w-resolution of length n of M . If no such finite w-resolution exists, then
w-fdR(M) = ∞; otherwise, define w-fdR(M) = n if n is the length of a shortest
w-flat w-resolution of M .

It is obvious that an R-module M is w-flat if and only if w-fdR(M) = 0, and
that w-fdR(M) 6 fdR(M), where fdR(M) denotes the classical flat dimension
of M .

Definition. The w-weak global dimension of a ring R is defined by

w-w.gl.dim(R) = sup{w-fdR(M) | M is an R-module}.

Obviously, if we denote the classical weak global dimension of a ring R by
w.gl.dim(R), then w-w.gl.dim(R) 6 w.gl.dim(R). Recall from [20] that a ring
R is said to be a DW ring if every ideal of R is a w-ideal. Then a ring R is a DW
ring if and only if every R-module is a w-module, if and only if GV(R) = {R}
(see [20, Theorem 3.8]). Every ring of weak global dimension at most one is a
DW ring. Notice that if R is a DW ring, then w-w.gl.dim(R) = w.gl.dim(R).

Let us regard that the v-, t- and w-operation are well-known star-operations
on domains. Recall that an integral domain R is said to be a PVMD if every
nonzero finitely generated ideal I is t-invertible, that is, there is a fractional
ideal B of R such that (IB)t = R, equivalently, (IB)w = R. It is known that an
integral domain R is a PVMD if and only if Rm is a valuation domain for each
m ∈ w-Max(R). Examples of PVMDs are Prüfer domains, Krull domains, GCD
domains, integrally closed coherent domains, etc. In this paper, we prove that
an integral domain R is a PVMD if and only if every torsionfree R-module is
w-flat, if and only if w-w.gl.dim(R) 6 1 (see Theorem 3.5). Let R[x] denote the
polynomial ring in one variable x overR. Then the well-known Hilbert’s Syzygy
Theorem states that w.gl.dim(R[x]) = w.gl.dim(R)+1. However, we show that
there is a large class of domains in which the corresponding equality for w-weak
global dimension does not hold. Namely, it is shown that if R is an integral
domain but not a field and if R[x] is w-coherent, then w-w.gl.dim(R[x]) =
w-w.gl.dim(R) (see Theorem 4.7).

For unexplained terminologies and notations, we refer to [5, 6, 16].
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2. On w-flat dimension of modules

We begin with an example of modules of w-flat dimension one.

Example 2.1. It is proved in [11, Proposition 3.8] that every GV-torsionfree
w-flat module over an integral domain R is torsionfree. In fact that is also true
for arbitrary commutative rings. Let a be an element of R which is neither
a zero-divisor nor a unit. Then aR ∼= R. By [25, Theorem 2.7], R/aR is a
GV-torsionfree R-module. Since R/aR is a torsion R-module, R/aR is not a
w-flat module, and so w-fdR(R/aR) = 1.

Before giving characterizations of modules of w-flat dimension at most n,
we prove the following lemma.

Lemma 2.2. Let N be an R-module and 0 → A → F → C → 0 a w-exact
sequence of R-modules with F a w-flat module. Then for any n > 0, the induced
map TorRn+1(C,N) → TorRn (A,N) is a w-isomorphism. Hence, TorRn+1(C,N)

is GV-torsion if and only if so is TorRn (A,N).

Proof. By [11, Proposition 3.2], there exists a w-exact sequence of R-modules

TorRn+1(F,N) → TorRn+1(C,N) → TorRn (A,N) → TorRn (F,N).

The result now follows from Proposition 1.1. �

Proposition 2.3. The following are equivalent for an R-module M .

(1) w-fdR(M) 6 n.

(2) TorRn+k(M,N) is GV-torsion for all R-modules N and all k > 0.

(3) TorRn+1(M,N) is GV-torsion for all R-modules N .

(4) If 0 → Fn → Fn−1 → · · · → F1 → F0 → M → 0 is an exact sequence,

where F0, F1, . . . , Fn−1 are flat R-modules, then Fn is w-flat.
(5) If 0 → Fn → Fn−1 → · · · → F1 → F0 → M → 0 is a w-exact sequence,

where F0, F1, . . . , Fn−1 are w-flat R-modules, then Fn is w-flat.
(6) If 0 → Fn → Fn−1 → · · · → F1 → F0 → M → 0 is an exact sequence,

where F0, F1, . . . , Fn−1 are w-flat R-modules, then Fn is w-flat.
(7) If 0 → Fn → Fn−1 → · · · → F1 → F0 → M → 0 is a w-exact sequence,

where F0, F1, . . . , Fn−1 are flat R-modules, then Fn is w-flat.

Proof. (1) ⇒ (2) We prove (2) by induction on n > 0. For the case n = 0,
M is a w-flat module. Then (2) holds by Proposition 1.1. If n > 0, then
there is a w-exact sequence 0 → Fn → Fn−1 → · · · → F1 → F0 → M → 0,
where each Fi is a w-flat R-module. Set K0 = ker(F0 → M). Then both
0 → K0 → F0 → M → 0 and 0 → Fn → Fn−1 → · · · → F1 → K0 → 0 are w-
exact, and w-fdR(K0) 6 n− 1. By induction, TorRn−1+k(K0, N) is GV-torsion
for all R-modules N and all k > 0. Thus, it follows from Lemma 2.2 that
TorRn+k(M,N) is also GV-torsion.

(2) ⇒ (3) Trivial.
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(3) ⇒ (4) Write K0 = ker(F0 → M) and Ki = ker(Fi → Fi−1), where
i = 1, . . . , n − 1. Then Kn−1 = Fn. Since all F0, F1, . . . , Fn−1 are flat,

TorR1 (Fn, N) ∼= TorRn+1(M,N) is GV-torsion for all R-modules N . Hence, Fn

is a w-flat module by Proposition 1.1.
(4) ⇒ (1) Obvious.
(3) ⇒ (5) Set Ln = Fn and Li = im(Fi → Fi−1), where i = 1, . . . , n − 1.

Then both 0 → Li+1 → Fi → Li → 0 and 0 → L1 → F0 → M → 0 are w-exact

sequences. By using Lemma 2.2 repeatedly, we will see that TorR1 (Fn, N) is
GV-torsion for all R-modules N . Thus, Fn is a w-flat module.

(5) ⇒ (6) ⇒ (4), (5) ⇒ (7), and (7) ⇒ (4) are obvious. �

Proposition 2.4. Let M be an R-module. Then

(1) w-fdR(M) 6 n if and only if fdRm
(Mm) 6 n for all m ∈ w-Max(R).

(2) w-fdR(M) = sup { fdRm
(Mm) | m ∈ w-Max(R)}.

Proof. Statement (2) follows immediately from (1), and so we only prove (1).
Let 0 → Fn → Fn−1 → · · · → F1 → F0 → M → 0 be an exact sequence, where
F0, F1, . . . , Fn−1 are flat R-modules. By localizing at m ∈ w-Max(R), we get
an exact sequence of Rm-modules 0 → (Fn)m → (Fn−1)m → · · · → (F1)m →
(F0)m → (M)m → 0. Also, Proposition 1.1 says that Fn is w-flat if and only
if (Fn)m is flat over Rm for all m ∈ w-Max(R). Thus the desired conclusion
follows. �

3. The w-weak global dimension of rings and some
characterizations of PVMDs

In this section, we discuss the w-weak global dimension of rings, and then
give a characterization of PVMDs. First, we record a consequence of Proposi-
tion 2.4.

Proposition 3.1. For any commutative ring R, we have

w-w.gl.dim(R) = sup {w.gl.dim(Rm) | m ∈ w-Max(R)} .

Remark 3.2. It is shown in [22, Theorem 4.4] that a commutative ring R is von
Neumann regular if and only if every R-module is w-flat, i.e., w-w.gl.dim(R) =
0. Thus, the w-weak global dimension can also measure how far away a ring R
is from being von Neumann regular. Moreover, we see that an integral domain
R is a field if and only if w-w.gl.dim(R) = 0.

It is worthwhile to point out that the rings of w-weak global dimension
at most one have been investigated by the first named author and Kim in
[22]. In particular, they studied w-semihereditary rings. Recall that a ring
R is said to be w-semihereditary if every finite type ideal of R is w-projective;
equivalently, every finitely generated ideal ofR is w-projective. Then a ring R is
w-semihereditary if and only if R is a w-coherent ring with w-w.gl.dim(R) 6 1
(see [22, Theorem 4.14]).
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Proposition 3.3. The following statements are equivalent for R.

(1) w-fdR(M) 6 n for all R-modules M .

(2) TorRn+k(M,N) is GV-torsion for all R-modules M and N and all k > 0.

(3) TorRn+1(M,N) is GV-torsion for all R-modules M and N .

(4) w-fdR(R/I) 6 n for all ideals I of R.

(5) w-fdR(R/I) 6 n for all finite type ideals I of R.

(6) w-fdR(R/I) 6 n for all finitely generated ideals I of R.

(7) w-w.gl.dim(R) 6 n.

Consequently, the w-weak global dimension of R is also determined by the

formulas:

w-w.gl.dim(R)= sup {w-fdR(R/I) | I is an ideal of R}

= sup {w-fdR(R/I) | I is a finite type ideal of R}

= sup {w-fdR(R/I) | I is a finitely generated ideal of R} .

Proof. (1) ⇔ (7) and (1) ⇒ (4) ⇒ (5) ⇒ (6) are obvious.
(1) ⇒ (2) and (3) ⇒ (1) are immediate from Proposition 2.3.
(2) ⇒ (3) Trivial.
(6) ⇒ (1) Let M be an R-module and 0 → Fn → Fn−1 → · · · → F1 →

F0 → M → 0 an exact sequence, where F0, F1, . . . , Fn−1 are flat R-modules.
To complete the proof, it suffices, by Proposition 1.1, to prove that (Fn)m is
flat over Rm for each m ∈ w-Max(R). Let A be a finitely generated ideal of Rm.
Then A ∼= Im for some finitely generated ideal I of R. Thus w-fdR(R/I) 6 n

by (6). It follows from Proposition 2.3 that TorR1 (R/I, Fn) ∼= TorRn+1(R/I,M)

is GV-torsion, and so TorRm

1 (Rm/A, (Fn)m) ∼= TorR1 (R/I, Fn)m = 0. Hence
(Fn)m is flat over Rm, as desired. �

Our next proposition characterizes PVMDs by w-projective modules.

Proposition 3.4. The following are equivalent for an integral domain R.

(1) R is a PVMD.

(2) Every finitely generated submodule of a projective module is w-projec-
tive.

(3) Every finite type submodule of a projective module is w-projective.
(4) Every finitely generated torsionfree module is w-projective.
(5) Every finite type torsionfree module is w-projective.
(6) Every finitely generated submodule of a w-projective module is w-projec-

tive.

(7) Every finite type submodule of a w-projective module is w-projective.

Proof. (1) ⇔ (3) ⇔ (5) See [19].
(2) ⇔ (3), (4) ⇔ (5), and (6) ⇔ (7) follow from [21, Proposition 2.3].
(6) ⇒ (2) This is clear.
(4) ⇒ (6) Let N be a finitely generated submodule of a w-projective R-

module M . Set M1 = M/torGV(M) and N1 = N/torGV(N). Then the map
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N1 → M1 induced by the inclusion N →֒ M is a w-monomorphism. But N1

is a GV-torsionfree R-module, so the induced map is a monomorphism. Thus,
we may assume that M is GV-torsionfree. By [22, Proposition 2.7], M is a
torsionfree module and so is N . Hence, N is w-projective by (4). �

We now offer the promised homological algebra characterization of PVMDs.

Theorem 3.5. The following are equivalent for an integral domain R.

(1) R is a PVMD.

(2) Every torsionfree R-module is w-flat.
(3) w-w.gl.dim(R) 6 1.

Proof. (1) ⇒ (2) Let M be a torsionfree R-module and m ∈ w-Max(R). Then
since Rm is a valuation domain, Mm is flat over Rm. Thus, M is w-flat by
Proposition 1.1.

(2) ⇒ (3) Let M be an R-module. Then there is an exact sequence of R-
modules 0 → A → F → M → 0 with F free. Since A is torsionfree, it is w-flat
by (2). Hence, w-fdR(M) 6 1, and so w-w.gl.dim(R) 6 1.

(3) ⇒ (1) Let I be a nonzero finitely generated ideal of R. As w-fdR(R/I) 6
1, I is a w-flat ideal. Thus, for any m ∈ w-Max(R), we have that Im is a finitely
generated flat ideal of Rm, and so it is projective. Since Rm is a local domain,
Im is free. Hence, it follows from [21, Proposition 2.9] that I is a w-projective
ideal of R, and so it is w-invertible by [21, Theorem 4.15]. This proves that R
is a PVMD. �

Now, we provide an example to show that there is a ring of finite w-weak
global dimension but infinite weak global dimension.

Example 3.6. Let R be the ring k[x1, x2, x3, . . . ] of polynomials in an infinite
number of variables over a field k. Then by [17, p. 9, Remark], R is a Krull
domain, and so it is a PVMD. By Theorem 3.5, we have w-w.gl.dim(R) 6 1.
But it is known that w.gl.dim(R) = ∞.

For the weak global dimension of coherent rings, we have the following result.

Lemma 3.7. If R is a coherent ring, then w.gl.dim(R) 6 n if and only if

fdR(R/m) 6 n for every maximal ideal m of R.

Proof. Use [6, Corollary 2.5.6, Theorem 2.5.9 and Corollary 2.5.10]. �

We close this section by giving the w-theoretic analogue of Lemma 3.7.

Proposition 3.8. If R is a w-coherent ring, then w-w.gl.dim(R) 6 n if and

only if w-fdR(R/m) 6 n for each m ∈ w-Max(R).

Proof. First, we note that Rm is a coherent local ring for all m ∈ w-Max(R).
Then w-w.gl.dim(R) 6 n if and only if w.gl.dim(Rm) 6 n for all m ∈ w-Max(R)
(by Proposition 3.1), if and only if fdRm

(Rm/mRm) 6 n for all m ∈ w-Max(R)
(by Lemma 3.7), if and only if w-fdR(R/m) 6 n for all m ∈ w-Max(R) (by
Proposition 2.4). �
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4. The w-weak global dimension of R[x]

In this section, we discuss the w-weak global dimension of a polynomial ring
R[x] and show that there is a large class of domains without Hilbert’s syzygy
Theorem for the w-weak global dimension. The method used in this section is
to utilize w-Nagata modules over w-Nagata rings.

Let M be an R-module. Write

M [x] := R[x]
⊗

R M =

{

∑

i

uix
i

∣

∣

∣

∣

ui ∈ M

}

.

For any α ∈ M [x], we denote by c(α) the submodule of M generated by the
coefficients of α and is called the content of α. If A is an R[x]-submodule of
M [x], then the subset c(A) of all coefficients of elements in A is a submodule
of M and is called the content of A.

In the following we set

Sd = {f ∈ R[x] | c(f) = R} and Sw = {f ∈ R[x] | c(f)w = R}.

It is easy to see that Sd and Sw are multiplicative closed sets of R[x]. Note
that a finitely generated ideal J of R is a GV-ideal if and only if Jw = R (see
[25, Proposition 3.5]). From this, we have Sw = {f ∈ R[x] | c(f) ∈ GV(R)}.
For any R-module M , we set

R〈x〉 := R[x]Sd
, M〈x〉 := M [x]Sd

= R〈x〉
⊗

R M,

and
R{x} := R[x]Sw

, M{x} := M [x]Sw
= R{x}

⊗

R M.

This type of rings was first introduced and studied by Nagata. So we call
R〈x〉 (resp., R{x}) a Nagata (resp. w-Nagata) ring and M〈x〉 (resp., M{x}) a
Nagata (resp., w-Nagata) module. We now list some properties of them that
will be used in the rest of this section.

Lemma 4.1. (1) Sw = R[x]−
⋃

{m[x] | m ∈ w-Max(R)}.
(2) {m{x} | m ∈ w-Max(R)} is the set of all maximal ideals of R{x}.
(3) Let M be an R-module and m ∈ w-Max(R). Then

M{x}
m{x} = M [x]

m[x] = Mm〈x〉.

(4) If M is an R-module, then M is w-flat if and only if M{x} is flat over

R{x}.
(5) For any R-module M , w-fdR(M) = fdR{x}(M{x}).

Proof. For (1) and (2), see [21, Proposition 3.3]. For the proof of (3), see
[21, Proposition 3.4]. Also, when R is an integral domain, (4) was proved in
[3, Theorem 1.7]. In fact, its proof is true for arbitrary commutative rings.
Finally, (5) follows immediately from (4) and [21, Proposition 3.7]. �

Proposition 4.2. Let R{x} be a coherent ring. Then

(1) R is a w-coherent ring.
(2) w-w.gl.dim(R) = w.gl.dim(R{x}).
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Proof. (1) Let I be a finitely generated ideal of R. Then I{x} is a finitely
generated ideal of R{x}. Since R{x} is coherent, I{x} is finitely presented,
and so I is of finitely presented type by [21, Proposition 3.9]. Thus, R is
w-coherent.

(2) Let n be a positive integer. Then w-w.gl.dim(R) 6 n if and only if
w-fdR(R/m) 6 n for all m ∈ w-Max(R) (by (1) and Proposition 3.8), if and
only if fdR{x}(R{x}/m{x}) 6 n for all maximal ideals m{x} of R{x} (by parts
(2) and (5) of Lemma 4.1), if and only if w.gl.dim(R{x}) 6 n (by Lemma 3.7).
This proves (2). �

In order to exhibit our main theorem, we need to prepare a little.

Lemma 4.3. Let S be a multiplicative closed set of nonzero-divisors of R and

let M be a submodule of a free R-module. For any RS-module Z, we denote by

Zw the w-envelope of Z as an R-module and by ZW the w-envelope of Z as a

RS-module.

(1) If J ∈ GV(R), then JS ∈ GV(RS).
(2) (MS)W = ((Mw)S)W . Consequently, if RS is a DW ring, then MS =

(Mw)S .
(3) If M is of finite type (resp., of finitely presented type), then MS is a

finite type (resp., finitely presented type) RS-module. Consequently, if

RS is a DW ring, and if M is of finite type (resp., of finitely presented

type), then MS is finitely generated (resp., finitely presented) over RS.

(4) If R is a w-coherent, then so is RS. Consequently, if R is w-coherent
for which RS is a DW ring, then RS is coherent.

Proof. (1) Since each element of S is not a zero-divisor of R, the natural ho-
momorphism R → RS is a monomorphism. So we may assume that R ⊆ RS .
Thus, (1) holds by [24, Lemma 4].

(2) Clearly, (MS)W ⊆ ((Mw)S)W as M ⊆ Mw. On the other hand, let
y ∈ ((Mw)S)W . Then there exists J ∈ GV(RS) such that Jy ⊆ (Mw)S . Since
J is finitely generated, J = IS for some finitely generated ideal I of R. Thus,
we can find a c ∈ S with cIy ⊆ Mw. Also, since I is finitely generated, there
is a J ′ ∈ GV(R) such that J ′Icy ⊆ M , and so J ′

SJy ⊆ MS . By (1), we have
J ′
S ∈ GV(RS), and so J ′

SJ ∈ GV(RS). Hence, y ∈ (MS)W .
(3) LetM be a module of finite type. ThenMw = Nw for some finitely gener-

ated submodule N of M . By (2), we get (MS)W = ((Mw)S)W = ((Nw)S)W =
(NS)W , and so MS is of finite type over RS . The case of finitely presented type
can be proved similarly to the case of finite type.

(4) Immediate from part (3). �

Lemma 4.4. Let A be an ideal of R[x] with c(A)w = R. Then A ∩ Sw 6= ∅.

Proof. Since c(A)w = R, there is, by [25, Proposition 3.7], a finitely generated
subideal B of c(A) with Bw = R. Hence there are finitely many polynomials
f1, . . . , fn ∈ A with c(f1, . . . , fn)w = R. For sufficiently large t1, . . . , tn, we
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have that the polynomial f = xt1f1 + · · ·+ xtnfn satisfies f ∈ A and c(f)w =
c(f1, . . . , fn)w = R. Thus, f ∈ A ∩ Sw, as desired. �

Following Lucas [12], we use Q0(R) to denote the ring of finite fractions

over R. Then the ring Q0(R) of finite fractions consists of those elements f(x)
g(x) ,

where f(x) =
∑n

i=0 aix
i, g(x) =

∑n

i=0 bix
i ∈ R[x] and g(x) is a nonzero-divisor

of R[x] with the coefficient relations aibj = ajbi for each i and j. For any ideal
I of R, set I−1 = {z ∈ Q0(R) | zI ⊆ R}. Recall that an ideal I of R is called
semiregular if there is a finitely generated subideal B of I with ann(I) = 0. It
is proved in [21, Lemma 4.7] that a semiregular finitely generated ideal I is a
GV-ideal if and only if I−1 = R.

Proposition 4.5. For any commutative ring R, R{x} is a DW ring.

Proof. Let A ∈ GV(R{x}). Then A = BSw
for some finitely generated ideal

B of R[x]. Set J = c(B). Obviously, J is a finitely generated ideal of R.
Moreover, we claim that J is semiregular. Indeed, let Jz = 0 for some z ∈ R.
Then Az = 0, and so z = 0. Also, notice that B ⊆ J [x], and so A ⊆ J{x}.
By [25, Proposition 1.2], we have J{x} ∈ GV(R{x}). Let u ∈ J−1. Then
u ∈ Q0(R) and Ju ⊆ R, and so J{x}u ⊆ R{x}. Hence, u ∈ R{x}, and so

u = f

g
, where f ∈ R[x] and g ∈ Sw. As gu = f , we get c(g)u = c(f) ⊆ R. But

c(g) ∈ GV(R), so u ∈ R. This proves that J−1 = R. Thus, J ∈ GV(R), i.e.,
c(B)w = R. By Lemma 4.4, B ∩ Sw 6= ∅, and so A = R{x}. It follows that
R{x} is a DW ring. �

Corollary 4.6. If R[x] is a w-coherent ring, then R{x} is a coherent ring.

Proof. This follows from Proposition 4.5 and Lemma 4.3(4). �

From the above results we get the following theorem.

Theorem 4.7. Let R be an integral domain with quotient field K. If R is not

a field for which R[x] is w-coherent, then

w-w.gl.dim(R[x]) = w-w.gl.dim(R).

Proof. It suffices to show, for a positive integer n, that w-w.gl.dim(R[x]) 6 n
if and only if w-w.gl.dim(R) 6 n. Also, by Proposition 4.5 and Corollary 4.6,
R{x} is a coherent DW ring .

First, suppose that w-w.gl.dim(R[x]) 6 n and that M is an R-module. Let
m ∈ w-Max(R). Then m 6= 0 as R is not a field. Thus, by using [8, Proposition
1.1], it is easy to see that m[x] ∈ w-Max(R[x]). Hence, by Lemma 4.1(3) and
Proposition 2.4, we have

fdR{x}m{x}

(

M{x}m{x}

)

= fdR[x]m[x]

(

M [x]m[x]

)

6 n.

It follows that fdR{x}(M{x}) 6 n, and so w-fdR(M) 6 n by Lemma 4.1(5).
Hence, w-w.gl.dim(R) 6 n.
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Conversely, assume w-w.gl.dim(R) 6 n and let P ∈ w-Max(R[x]). If P∩R =
0, then R[x]P = (R[x]S)PS

= K[x]PS
is a discrete valuation domain, where

S = R− 0. So w.gl.dim(R[x]P ) 6 1 6 n. If P ∩R 6= 0, then by [8, Proposition
1.1], m := P ∩ R ∈ w-Max(R) and P = m[x]. It follows from Lemma 4.1(3)
and Proposition 4.2(2) that

w.gl.dim(R[x]P ) = w.gl.dim(R{x}m{x}) 6 w.gl.dim(R{x}) 6 n.

Thus, w-w.gl.dim(R[x]) 6 n by Proposition 3.1. �

Example 4.8. Notice that an integral domain R is a PVMD if and only if so
is R[x] (see [9, Theorem 3.7]). Also, from Proposition 3.4 and [21, Theorem
2.19], it is easy to see that every PVMD is a w-coherent domain. Thus, every
PVMD which is not a field satisfies the condition of Theorem 4.7. However,
the converse is not true in general. In fact, every Noetherian domain which is
not integrally closed satisfies the condition of Theorem 4.7 but not a PVMD.
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