• 제목/요약/키워드: Power-factor-correction rectifier

검색결과 115건 처리시간 0.022초

Three-phase Three-level Boost-type Front-end PFC Rectifier for Improving Power Quality at Input AC Mains of Telecom Loads

  • Saravana, Prakash P.;Kalpana, R.;Singh, Bhim
    • Journal of Power Electronics
    • /
    • 제18권6호
    • /
    • pp.1819-1829
    • /
    • 2018
  • A three-phase, three-switch, and three-level boost-type PWM rectifier (Vienna rectifier) is proposed as an active front-end power factor correction (PFC) rectifier for telecom loads. The proposed active front-end PFC rectifier system is modeled by the switching cycle average model. The relation between duty ratios and DC link capacitor voltages is derived in terms of the system input currents. Furthermore, the feasible switching states are identified and applied to the proposed system to reduce the switching stress and DC ripples. A detailed equivalent circuit analysis of the proposed front-end PFC rectifier is conducted, and its performance is verified through simulations in MATLAB. Simulation results are verified using an experimental setup of an active front-end PFC rectifier that was developed in the laboratory. Simulation and experimental results demonstrate the improved power quality parameters that are in accordance with the IEEE and IEC standards.

출력전압 범위가 넓은 새로운 푸시풀 퀀텀 직렬공진형 정류기를 위한 이산시간 동적 모델링과 기동 돌입전류 제거기법 (Discrete-Time Dynamic Modeling and Start-Up Inrush Elimination Technique for New Push-Pull Quantum Series Resonant Rectifier with Wide Output Voltage Range)

  • 문건우;윤석호;김용
    • 한국조명전기설비학회지:조명전기설비
    • /
    • 제11권4호
    • /
    • pp.100-108
    • /
    • 1997
  • 기동 돌입전류가 없는 역률개선을 위한 강압형과 승합형이 결합된 형태의 새로운 푸시풀 퀀텀 직렬공진형 정류기를 제안한다. 제안된 정류기의 동적모델링을 개발하여 기동 돌입전류를 제거하는 제어기법을 제안하였으며 컴퓨터 시뮬레이션과 실험을 통하여 제안된 정류기와 제어기법의 유용성을 보였다. 제안된 방식으로 고역률과 넓은 출력진압 범위를 얻었다.

  • PDF

역률제어회로를 갖는 인버터 구동 에어컨 (Inverter Driven Air-Conditioner With Power Factor Correction Circuit)

  • 권경안;박병욱;김정태;정용채
    • 전력전자학회논문지
    • /
    • 제4권1호
    • /
    • pp.105-110
    • /
    • 1999
  • 이 논문은 역률제어회로를 갖는 인버터 구동 에어컨에 관해 설명한다. 정류기에 역률제어회로를 적용함에 의해서 전원선으로의 고조파 삽입을 줄일 수 있고, 효율을 향상시킬 수 있으며, 기존의 인버터와 비교해서 전체 시스템 가격을 낮출 수 있다. 또한, 역률제어회로의 출력전압을 안정화함에 의해서 시스템 성능을 향상시킨다. 본 논문에서는 역률제어회로의 자세한 설계절차를 제시하고, 역률제어회로의 여러 가지 장점을 시뮬레이션과 실험을 통해서 확인하였다.

고역률 제어를 위한 단산 전압원 PWM 컨버터에 관한 연구 (A study of Single-phase Voltage Source PWM Converter for High Power Factor)

  • 류성식;손진근;정을기;김형원;전희종
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1999년도 전력전자학술대회 논문집
    • /
    • pp.362-365
    • /
    • 1999
  • In this paper, the method of reducing harmonics and correcting of power factor in single PWM converter associated with diode rectifier and boos converter is studied. The ac-dc converter in which the harmonic distortion in the input current is reduced using a third harmonic injected PWM is proposed. A lower switching power loss and easy configuration o control circuit are obtained by adopting discontinuous current mode. Simulation and experimental results of ac-dc converter with 5[KHz] switching frequency are presented and correction of power factor and reduction of total harmonic distortion was established.

  • PDF

부스트 컨버터를 이용한 새로운 역율 개선회로 (A New Power Factor Correction Circuit Using Boost Converter)

  • 김만고
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제21권2호
    • /
    • pp.178-185
    • /
    • 1997
  • According to the wide - spread use of rectifier in electronic equipments, such problems as electronic components failures or equipment disorders have been occurred due to current harmonics. To overcome these problems, power factor correction circuits employing boost converter have been used. The high switching stress of boost converter can be reduced by snubber circuit. Recently, research activities in snubber circuits have been directed to energy recovery snubber for improving the efficiency of power converter. In this study, a new passive snubber circuit which can recover trapped snubber energy without added control is proposed for boost converter. The control of boost converter with proposed snubber is the same as the conventional one. In addition, the energy recovery circuit can be implemented with a few passive components. The circuit operation is confirmed through simulation.

  • PDF

확장형 자기 구조의 다중 결합 인덕터를 적용한 역률개선회로에 관한 연구 (Study on the Power Factor Correction Circuit Applying Multiple Coupling Inductor with Expandable Integrated Magnetic Structure)

  • 유정상;길용만;안태영
    • 반도체디스플레이기술학회지
    • /
    • 제17권1호
    • /
    • pp.21-26
    • /
    • 2018
  • In this paper, a multiple coupling inductor with expandable-integrated magnetic structure was proposed to enable miniaturization of external switched mode power supply (SMPS) for a large display. Inductance formula of the proposed inductor structure was derived through magnetic circuit analysis for a simple inductance designing process. The proposed inductor was applied into a 1kW class interleaved bridgeless power factor correction circuit which requires four inductors, and experimental steady state result of the circuit was compared. According to the experimental result, it was found that the proposed multiple coupling inductor shows the electrical characteristics that can replace the conventional separated inductors and is suitable for miniaturization of the SMPS since the circuit configuration is possible with one shared inductor.

SINGLE-PHASE ACTIVE RECTIFIER WITH HIGH POWER FACTOR CAPABILITY FOR INVERTER AIR-CONDITIONER

  • Jung, Yong-Chae;Kwon, Kyung-Ahn
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1998년도 Proceedings ICPE 98 1998 International Conference on Power Electronics
    • /
    • pp.677-682
    • /
    • 1998
  • A Single-phase Active Rectifier (SAR) [4-6] with high power factor capability is adopted to satisfy the international harmonic current standards such as IEC 1000-3-2. To minimize the input current distortion and to apply the control IC, such as FA5331, UC3854, ML4821 and so forth, the new adequate sensing circuits of the input voltage and current are proposed. There are tow methods applicable the SAR to inverter air-conditioner from the viewpoint of both efficiency and cost. The selecting methods of the passive components are presented for the two approaches. Using the determined components, the loss analyses are carried out. The prototype SAR circuits of these two approaches with 3kW power consumption are built and the operation and performance of the circuits with power factor correction capability are verified through the experimental results.

  • PDF

보빈 적층 방식의 다중 공유결합 인덕터를 이용한 4병렬 스위칭 정류기에 관한 연구 (A Study on the Expandable Bobbin Type Multiple Integrated Coupled-Inductor Applied 4-Pralleled Switching Rectifier)

  • 유정상;안태영
    • 반도체디스플레이기술학회지
    • /
    • 제18권4호
    • /
    • pp.18-24
    • /
    • 2019
  • In this paper, expandable bobbin type multiple integrated coupled-inductor applied 4-paralled switching rectifier was proposed. To design the proposed inductor easily, inductance designing formula was derived through magnetic circuit analysis of the 4-paralleled integrated coupled-inductor. Furthermore, to verify practicality of the proposed inductor, it was applied in 600W class 4-paralleled interleaved switching rectifier, and the steady-state characteristics of the proposed inductor and discrete inductors were compared. Consequently, it was showed that the proposed inductor can replace the conventional discrete inductors with alternative electrical characteristic standard, hence miniaturization of the SMPS can be achieved. From the test result, test circuit with the proposed inductor showed maximum 97.1% of power conversion efficiency and under 18W of power loss where the circuit with discrete inductors showed 96.7% and 20W respectively.

새로운 고조파 저감형 고역율 단상정류 회로 (A New Harmonics Reducing Type High Factor Single-Phase Rectifier Circuit)

  • 김칠용;문상필;조만철;서기영;권순걸
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2007년도 춘계학술대회 논문집
    • /
    • pp.468-472
    • /
    • 2007
  • For small capacity rectifier circuits such as these for consumer electronics and appliances, capacitor input type rectifier circuits are generally used. Consequently, various harmonics generated within the power system become a serious problem. Various studies of this effect have been presented previously. The absence of switching devices makes systems more tolerant to over-load, and brings low radio noise benefits. We propose a power factor correction scheme using a LC resonant in commercial frequency without switching devices. In this method, It makes a sinusoidal wave by widening conduction period using the current resonance in commercial frequency, Hence, the harmonic characteristics can be significantly improved, where the lower order harmonics, such as the fifth and seventh orders are much reduced. The result are confirmed by the theoretical and expermental implementations

  • PDF

GaN FET를 적용한 인터리브 CRM PFC의 효율특성에 관한 연구 (A Study on the Efficiency Characteristics of the Interleaved CRM PFC using GaN FET)

  • 안태영;장진행;길용만
    • 전력전자학회논문지
    • /
    • 제20권1호
    • /
    • pp.65-71
    • /
    • 2015
  • This paper presents the efficiency analysis of a critical current mode interleaved PFC rectifier, in which each of three different semiconductor switches is employed as the active switch. The Si FET, SiC FET, and GaN FET are consecutively used with the prototype PFC rectifier, and the efficiency of the PFC rectifier with each different semiconductor switch is analyzed. An equivalent circuit model of the PFC rectifier, which incorporates all the internal losses of the PFC rectifier, is developed. The rms values of the current waveforms main circuit components are calculated. By adapting the rms current waveforms to the equivalent model, all the losses are broken down and individually analyzed to assess the conduction loss, switching loss, and magnetic loss in the PFC rectifier. This study revealed that the GaN FET offers the highest overall efficiency with the least loss among the three switching devices. The GaN FET yields 96% efficiency at 90 V input and 97.6% efficiency at 240 V, under full load condition. This paper also confirmed that the efficiency of the three switching devices largely depends on the turn-on resistance and parasitic capacitance of the respective switching devices.