• 제목/요약/키워드: Power vector analysis

검색결과 365건 처리시간 0.021초

An Active Auxiliary Quasi-Resonant Commutation Block Snubber-Assisted Three Phase Voltage Source Soft Switching PFC Rectifier using IGBTs

  • Hiraki Eiji;Nakaoka Mutsuo;Sugimoto Shigeyuki;Ogawa Shigeaki
    • Journal of Power Electronics
    • /
    • 제5권1호
    • /
    • pp.29-35
    • /
    • 2005
  • This paper presents a novel prototype of an active auxiliary quasi-resonant snubber(Auxiliary Quasi-Resonant Commutation Block-Link; ARCB)-assisted three phase voltage source soft switching space voltage vector modulated PFC rectifier, which uses Zero Voltage Soft Switching (ZVS) commutation. The operating principles of this digitally-controlled three phase soft switching PWM-PFC rectifier system with an instantaneous power feedback scheme are illustrated and its steady-state performance is evaluated using computer-aided simulation analysis.

A New Support Vector Machine Model Based on Improved Imperialist Competitive Algorithm for Fault Diagnosis of Oil-immersed Transformers

  • Zhang, Yiyi;Wei, Hua;Liao, Ruijin;Wang, Youyuan;Yang, Lijun;Yan, Chunyu
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권2호
    • /
    • pp.830-839
    • /
    • 2017
  • Support vector machine (SVM) is introduced as an effective fault diagnosis technique based on dissolved gases analysis (DGA) for oil-immersed transformers with maximum generalization ability; however, the applicability of the SVM is highly affected due to the difficulty of selecting the SVM parameters appropriately. Therefore, a novel approach combing SVM with improved imperialist competitive algorithm (IICA) for fault diagnosis of oil-immersed transformers was proposed in the paper. The improved ICA, which is proved to be an effective optimization approach, is employed to optimize the parameters of SVM. Cross validation and normalizations were applied in the training processes of SVM and the trained SVM model with the optimized parameters was established for fault diagnosis of oil-immersed transformers. Three classification benchmark sets were studied based on particle swarm optimization SVM (PSOSVM) and IICASVM with four multiple classification schemes to select the best scheme for transformer fault diagnosis. The results show that the proposed model can obtain higher diagnosis accuracy than other methods. The comparisons confirm that the proposed model is an effective approach for classification problems.

Analysis and Control of NPC-3L Inverter Fed Dual Three-Phase PMSM Drives Considering their Asymmetric Factors

  • Chen, Jian;Wang, Zheng;Wang, Yibo;Cheng, Ming
    • Journal of Power Electronics
    • /
    • 제17권6호
    • /
    • pp.1500-1511
    • /
    • 2017
  • The purpose of this paper is to study a high-performance control scheme for neutral-point-clamping three-level (NPC-3L) inverter fed dual three-phase permanent magnet synchronous motor (PMSM) drives by considering some asymmetric factors such as the non-identical parameters in phase windings. To implement this, the system model is analyzed for dual three-phase PMSM drives with asymmetric factors based on the vector space decomposition (VSD) principle. Based on the equivalent circuits, PI controllers with feedforward compensation are used in the d-q subspace for regulating torque, where the cut-off frequency of the PI controllers are set at the twice the fundamental frequency for compensating both the additional DC component and the second order component caused by asymmetry. Meanwhile, proportional resonant (PR) controllers are proposed in the x-y subspace for suppressing the possible unbalanced currents in the phase windings. A dual three-phase space vector modulation (DT-SVM) is designed for the drive, and the balancing factor is designed based on the numerical fitting surface for balancing the DC link capacitor voltages. Experimental results are given to demonstrate the validity of the theoretical analysis and the proposed control scheme.

듀얼 인버터 개방 권선형 영구자석 동기 전동기 제어를 위한 PWM 가변 캐리어 생성법 및 영벡터 위치에 따른 전류 리플 분석 (PWM Variable Carrier Generating Method for OEW PMSM with Dual Inverter and Current Ripple Analysis according to Zero Vector Position)

  • 심재훈;최현규;하정익
    • 전력전자학회논문지
    • /
    • 제25권4호
    • /
    • pp.279-285
    • /
    • 2020
  • An open-end winding (OEW) permanent magnet synchronous motor with dual inverters can synthesize large voltages for a motor with the same DC link voltage. This ability has the advantage of reducing the use of DC/DC boost converters or high voltage batteries. However, zero-sequence voltage (ZSV), which is caused by the difference in the combined voltage between the primary and secondary inverters, can generate a zero-sequence current (ZSC) that increases system losses. Among the methods for eliminating this phenomenon, combining voltage vector eliminated ZSV cannot be accomplished by the conventional Pulse Width Modulation(PWM) method. In this study, a PWM carrier generation method using functionalization to generate a switching pattern to suppress ZSC is proposed and applied to analyze the control influence of the center-zero vector in the switching sequence about the current ripple.

Estimation of Output Voltage and Magnetic Flux Density for a Wireless Charging System with Different Magnetic Core Properties

  • Park, Ji Hea;Kim, Sang Woo
    • Journal of Magnetics
    • /
    • 제18권2호
    • /
    • pp.105-110
    • /
    • 2013
  • The design model and key parameters of the material design for the control of induced magnetic flux at the near-field and efficient power transfer in a modified wireless power transfer (WPT) system with a large air gap of wireless electric vehicles were investigated through analytical simulations for magnetic vector and time-domain transient analysis. Higher saturation magnetic core with low core loss induced a stronger vertical magnetic field by the W-type primary coil in the WPT system with a gap of 20 cm at 20 kHz, which is shown from the vector potentials of the magnetic induction. The transient analysis shows that the higher magnetic fluxes through the pick-up cores lead to a linear increment of the alternating voltage with a sinusoidal waveform in the non-contact energy transfer system.

Multi-Layer Perceptron 기법을 이용한 전력 분석 공격 구현 및 분석 (Implementation and Analysis of Power Analysis Attack Using Multi-Layer Perceptron Method)

  • 권홍필;배대현;하재철
    • 정보보호학회논문지
    • /
    • 제29권5호
    • /
    • pp.997-1006
    • /
    • 2019
  • 본 논문에서는 기존 전력 분석 공격의 어려움과 비효율성을 극복하기 위해 딥 러닝 기반의 MLP(Multi-Layer Perceptron) 알고리즘을 기반으로 한 공격 모델을 사용하여 암호 디바이스의 비밀 키를 찾는 공격을 시도하였다. 제안하는 전력 분석 공격 대상은 XMEGA128 8비트 프로세서 상에서 구현된 AES-128 암호 모듈이며, 16바이트의 비밀 키 중 한 바이트씩 복구하는 방식으로 구현하였다. 실험 결과, MLP 기반의 전력 분석 공격은 89.51%의 정확도로 비밀 키를 추출하였으며 전처리 기법을 수행한 경우에는 94.51%의 정확도를 나타내었다. 제안하는 MLP 기반의 전력 분석 공격은 학습을 통한 feature를 추출할 수 있는 성질이 있어 SVM(Support Vector Machine)과 같은 머신 러닝 기반 모델보다 우수한 공격 특성을 보임을 확인하였다.

전달강성계수법을 이용한 보강재를 갖는 사각평판의 진동해석 (Vibration Analysis of a Rectangular Plate with Stiffeners Using the Transfer Stiffness Coefficient Method)

  • 문덕홍
    • 동력기계공학회지
    • /
    • 제9권1호
    • /
    • pp.42-49
    • /
    • 2005
  • The vibration analysis of a rectangular plate with stiffeners is formulated by using the transfer stiffness coefficient method (TSCM). This method is based on the concept of the successive transmission of stiffness coefficients which are defined as the relationship between the force vector and the displacement vector at an arbitrary nodal line. In order to confirm the validity of the present method, bending vibration analysis for a rectangular plate with stiffener is carried out on a personal computer by using the present method and the finite element method (FEM). Through comparing computational results of the TSCM and the FEM, the effectivness of the TSCM from the viewpoint of computational cost, that is, computational time and storage is demonstrated.

  • PDF

2차원 유한요소법에 의한 SLIM의 3차원적 특성 해석 (A 3 Dimensional Characteristic Analysis of SLIM by the 2-D Finite Element Method)

  • 조윤현;김용주;신판석;강도현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1990년도 추계학술대회 논문집 학회본부
    • /
    • pp.37-42
    • /
    • 1990
  • In order to obtain optimal design criteria and operating parameters, a Single-sided Linear Induction Motor (SLIM) is analysed by using a 2-D finite element method with magnetic and current vector potential. In the analysing procedures, the governing equation is derived from Maxwell's equation combined with the magnetic vector potential. As a forcing term, 3-phase voltage source is employed using the Kirchhoff's voltage law in order to look into effects of the unbalanced 3-phase currents and air gap flux density. Also, 2ndary eddy current distribution, longitudinal end and transverse edge effects are in turns visualized by flux lines in 3 different analysing planes as functions of frequency and input power.

  • PDF

Prediction of the Radiated Emission(RE)s due to the PCB Power-Bus' Resonance Modes and Mitigation of the RE Levels

  • Kahng, Sung-Tek
    • Journal of electromagnetic engineering and science
    • /
    • 제7권1호
    • /
    • pp.7-11
    • /
    • 2007
  • PCB Power-Bus (comprising power/ground planes) impedance and fields are evaluated by an efficient series expansion method that is suggested in this paper. It is used to investigate the structure's radiated emission(RE) levels and find acceptable ways of loading the power/ground planes such as decoupling capcitor(DeCap)s, balanced feeding and slits, in order to reduce the interferences. Also, the calculations and measurements of a proposed geometry are verified by vector fitting as a analysis model to check the behavior of the slit.

전력시스템 고조파 외란의 자동식별 (Automatic Classification of Power System Harmonic Disturbances)

  • 김병철;김현수;남상원
    • 제어로봇시스템학회논문지
    • /
    • 제6권7호
    • /
    • pp.551-558
    • /
    • 2000
  • In this paper a systematic approach to automatic classificationi of power system harmonic disturbances is proposed where the proposed approach consists of the following three steps:(i) detecting and localizing each harmonic disturbance by applying discrete wavelet transform(DWT) (ii) extracting an efficient feature vector from each detected disturbance waveform by utilizing FFT and principal component analysis (PCA) along with Fisher's criterion and (iii) classifying the corresponding type of each harmonic disturbance by recognizing the pattern of each feature vector. To demonstrate the performance and applicability of the proposed classification procedure some simulation results obtained by analyzing 8-class power system harmonic disturbances being generated with Matlab power system blockset are also provided.

  • PDF