• Title/Summary/Keyword: Power to gas

Search Result 4,311, Processing Time 0.049 seconds

Earthquake Monitoring : Future Strategy (지진관측 : 미래 발전 전략)

  • Chi, Heon-Cheol;Park, Jung-Ho;Kim, Geun-Young;Shin, Jin-Soo;Shin, In-Cheul;Lim, In-Seub;Jeong, Byung-Sun;Sheen, Dong-Hoon
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.3
    • /
    • pp.268-276
    • /
    • 2010
  • Earthquake Hazard Mitigation Law was activated into force on March 2009. By the law, the obligation to monitor the effect of earthquake on the facilities was extended to many organizations such as gas company and local governments. Based on the estimation of National Emergency Management Agency (NEMA), the number of free-surface acceleration stations would be expanded to more than 400. The advent of internet protocol and the more simplified operation have allowed the quick and easy installation of seismic stations. In addition, the dynamic range of seismic instruments has been continuously improved enough to evaluate damage intensity and to alert alarm directly for earthquake hazard mitigation. For direct visualization of damage intensity and area, Real Time Intensity COlor Mapping (RTICOM) is explained in detail. RTICOM would be used to retrieve the essential information for damage evaluation, Peak Ground Acceleration (PGA). Destructive earthquake damage is usually due to surface waves which just follow S wave. The peak amplitude of surface wave would be pre-estimated from the amplitude and frequency content of first arrival P wave. Earthquake Early Warning (EEW) system is conventionally defined to estimate local magnitude from P wave. The status of EEW is reviewed and the application of EEW to Odesan earthquake is exampled with ShakeMap in order to make clear its appearance. In the sense of rapidity, the earthquake announcement of Korea Meteorological Agency (KMA) might be dramatically improved by the adaption of EEW. In order to realize hazard mitigation, EEW should be applied to the local crucial facilities such as nuclear power plants and fragile semi-conduct plant. The distributed EEW is introduced with the application example of Uljin earthquake. Not only Nation-wide but also locally distributed EEW applications, all relevant information is needed to be shared in real time. The plan of extension of Korea Integrated Seismic System (KISS) is briefly explained in order to future cooperation of data sharing and utilization.

Interpretation of the Umbrella Clause in Investment Treaties (국제투자조약상 포괄적 보호조항(Umbrella Clauses)의 해석에 관한 연구)

  • Jo, Hee-Moon
    • Journal of Arbitration Studies
    • /
    • v.19 no.2
    • /
    • pp.95-126
    • /
    • 2009
  • One of the controversial issues in investor-state investment arbitration is the interpretation of "umbrella clause" that is found in most BIT and FTAs. This treaty clause requires on Contracting State of treaty to observe all investment obligations entered into with foreign investors from the other Contracting State. This clause did not receive in-depth attention until SGS v. Pakistan and SGS v. Philippines cases produced starkly different conclusions on the relations about treaty-based jurisdiction and contract-based jurisdiction. More recent decisions by other arbitral tribunals continue to show different approaches in their interpretation of umbrella clauses. Following the SGS v. Philippines decision, some recent decisions understand that all contracts are covered by umbrella clause, for example, in Siemens A.G. v. Argentina, LG&E Energy Corp. v. Argentina, Sempra Energy Int'l v. Argentina and Enron Corp. V. Argentina. However, other recent decisions have found a different approach that only certain kinds of public contracts are covered by umbrella clauses, for example, in El Paso Energy Int'l Co. v. Argentina, Pan American Energy LLC v. Argentina and CMS Gas Transmission Co. v. Argentina. With relation to the exhaustion of domestic remedies, most of tribunals have the position that the contractual remedy should not affect the jurisdiction of BIT tribunal. Even some tribunals considered that there is no need to exhaust contract remedies before bringing BIT arbitration, provoking suspicion of the validity of sanctity of contract in front of treaty obligation. The decision of the Annulment Committee In CMS case in 2007 was an extraordinarily surprising one and poured oil on the debate. The Committee composed of the three respected international lawyers, Gilbert Guillaume and Nabil Elaraby, both from the ICJ, and professor James Crawford, the Rapportuer of the International Law Commission on the Draft Articles on the Responsibility of States for Internationally Wrongful Acts, observed that the arbitral tribunal made critical errors of law, however, noting that it has limited power to review and overturn the award. The position of the Committee was a direct attack on ICSID system showing as an internal recognition of ICSID itself that the current system of investor-state arbitration is problematic. States are coming to limit the scope of umbrella clauses. For example, the 2004 U.S. Model BIT detailed definition of the type of contracts for which breach of contract claims may be submitted to arbitration, to increase certainty and predictability. Latin American countries, in particular, Argentina, are feeling collectively victims of these pro-investor interpretations of the ICSID tribunals. In fact, BIT between developed and developing countries are negotiated to protect foreign investment from developing countries. This general characteristic of BIT reflects naturally on the provisions making them extremely protective for foreign investors. Naturally, developing countries seek to interpret restrictively BIT provisions, whereas developed countries try to interpret more expansively. As most of cases arising out of alleged violation of BIT are administered in the ICSID, a forum under the auspices of the World Bank, these Latin American countries have been raising the legitimacy deficit of the ICSID. The Argentine cases have been provoking many legal issues of international law, predicting crisis almost coming in actual investor-state arbitration system. Some Latin American countries, such as Bolivia, Venezuela, Ecuador, Argentina, already showed their dissatisfaction with the ICSID system considering withdrawing from it to minimize the eventual investor-state dispute. Thus the disagreement over umbrella clauses in their interpretation is becoming interpreted as an historical reflection on the continued tension between developing and developed countries on foreign investment. There is an academic and political discussion on the possible return of the Calvo Doctrine in Latin America. The paper will comment on these problems related to the interpretation of umbrella clause. The paper analyses ICSID cases involving principally Latin American countries to identify the critical legal issues arising between developing and developed countries. And the paper discusses alternatives in improving actual investor-State investment arbitration; inter alia, the introduction of an appellate system and treaty interpretation rules.

  • PDF

A Study on the Thermal Conductivity Measurement for Planting Mats of Landscaping (조경용 식생매트의 열전도율 측정에 관한 연구)

  • Cha, Uk Jin;Yang, Geon Seok
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.46 no.6
    • /
    • pp.85-96
    • /
    • 2018
  • Developed nations have implemented various policies to reduce greenhouse gases since the 1997 Kyoto Protocol in order to minimize the effects of global warming. Korea should also reduce energy consumption in the industrial sector, and the transportation and building sectors in order to achieve its greenhouse gas reduction target of 37 percent compared to the Business As Usual levels. The government implements various laws and regulations for reducing energy consumption. To reduce energy consumption in the building sector, in particular, the Energy Conservation Design Standards are enforced according to the 'Enforcement Support for Green Building Construction'. The amount of electricity used to maintain room temperature at $28^{\circ}C$ in these buildings have a 30% reduction (measured on the walls and rooftop) in power usage compared to buildings not required to meet these standards. Although the effect of these energy savings on landscaping is proven, this demonstration is not effective for energy saving since it is not a suitable method for the 'Energy Saving Design Standards of Buildings'. For landscaping to be effective as far as a component of energy reduction, the perfusion rate of the building should be calculated based on the thermal conductivity of the component materials for the energy saving designs with respect to the basis of Article 14 of the Green Building Act. Therefore, the purpose of this study is to ensure that the planting-based mats currently being widely used in the landscape industry can have insulating performance suitable for the 'Energy Saving Design Standards' of Buildings according to the 'Enable Green Building Construction Methods'.

Process Design of Carbon Dioxide Storage in the Marine Geological Structure: I. Comparative Analysis of Thermodynamic Equations of State using Numerical Calculation (이산화탄소 해양지중저장 처리를 위한 공정 설계: I. 수치계산을 통한 열역학 상태방정식의 비교 분석)

  • Huh, Cheol;Kang, Seong-Gil
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.11 no.4
    • /
    • pp.181-190
    • /
    • 2008
  • To response climate change and Kyoto protocol and to reduce greenhouse gas emissions, marine geological storage of $CO_2$ is regarded as one of the most promising option. Marine geological storage of $CO_2$ is to capture $CO_2$ from major point sources(eg. power plant), to transport to the storage sites and to store $CO_2$ into the marine geological structure such as deep sea saline aquifer. To design a reliable $CO_2$ marine geological storage system, it is necessary to perform numerical process simulation using thermodynamic equation of state. The purpose of this paper is to compare and analyse the relevant equations of state including ideal, BWRS, PR, PRBM and SRK equation of state. To evaluate the predictive accuracy of the equation of the state, we compared numerical calculation results with reference experimental data. Ideal and SRK equation of state did not predict the density behavior above $29.85^{\circ}C$, 60 bar. Especially, they showed maximum 100% error in supercritical state. BWRS equation of state did not predict the density behavior between $60{\sim}80\;bar$ and near critical temperature. On the other hand, PR and PRBM equation of state showed good predictive capability in supercritical state. Since the thermodynamic conditions of $CO_2$ reservoir sites correspond to supercritical state(above $31.1^{\circ}C$ and 73.9 bar), we conclude that it is recommended to use PR and PRBM equation of state in designing of $CO_2$ marine geological storage process.

  • PDF

Innovation Technology Development & Commercialization Promotion of R&D Performance to Domestic Renewable Energy (신재생에너지 기술혁신 개발과 R&D성과 사업화 촉진 방안)

  • Lee, Yong-Seok;Rho, Do-Hwan
    • Journal of Korea Technology Innovation Society
    • /
    • v.12 no.4
    • /
    • pp.788-818
    • /
    • 2009
  • Renewable energy refers to solar energy, biomass energy, hydrogen energy, wind power, fuel cell, coal liquefaction and vaporization, marine energy, waste energy, and liquidity fuel made out of byproduct of geothermal heat, hydrogen and coal; it excludes energy based on coal, oil, nuclear energy and natural gas. Developed countries have recognized the importance of these energies and thus have set the mid to long term plans to develop and commercialize the technology and supported them with drastic political and financial measures. Considering the growing recognition to the field, it is necessary to analysis up-to-now achievement of the government's related projects, in the standards of type of renewable energy, management of sectional goals, and its commercialization. Korean government is chiefly following suit the USA and British policies of developing and distributing renewable energy. However, unlike Japan which is in the lead role in solar rays industry, it still lacks in state-directed support, participation of enterprises and social recognition. The research regarding renewable energy has mainly examinedthe state of supply of each technology and suitability of specific region for applying the technology. The evaluation shows that the research has been focused on supply and demand of renewable as well as general energy and solution for the enhancement of supply capacity in certain area. However, in-depth study for commercialization and the increase of capacity in industry followed by development of the technology is still inadequate. 'Cost-benefit model for each energy source' is used in analysis of technology development of renewable energy and quantitative and macro economical effects of its commercialization in order to foresee following expand in related industries and increase in added value. First, Investment on the renewable energy technology development is in direct proportion both to the product and growth, but product shows slightly higher index under the same amount of R&D investment than growth. It indicates that advance in technology greatly influences the final product, the energy growth. Moreover, while R&D investment on renewable energy product as well as the government funds included in the investment have proportionate influence on the renewable energy growth, private investment in the total amount invested has reciprocal influence. This statistic shows that research and development is mainly driven by government funds rather than private investment. Finally, while R&D investment on renewable energy growth affects proportionately, government funds and private investment shows no direct relations, which indicates that the effects of research and development on renewable energy do not affect government funds or private investment. All of the results signify that although it is important to have government policy in technology development and commercialization, private investment and active participation of enterprises are the key to the success in the industry.

  • PDF

A Study on the Trend and Utilization of Stone Waste (석재폐기물 현황 및 활용 연구)

  • Chea, Kwang-Seok;Lee, Young Geun;Koo, Namin;Yang, Hee Moon
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.3
    • /
    • pp.333-344
    • /
    • 2022
  • The quarrying and utilization of natural building stones such as granite and marble are rapidly emerging in developing countries. A huge amount of wastes is being generated during the processing, cutting and sizing of these stones to make them useable. These wastes are disposed of in the open environment and the toxic nature of these wastes negatively affects the environment and human health. The growth trend in the world stone industry was confirmed in output for 2019, increasing more than one percent and reaching a new peak of some 155 million tons, excluding quarry discards. Per-capita stone use rose to 268 square meters per thousand persons (m2/1,000 inh), from 266 the previous year and 177 in 2001. However, we have to take into consideration that the world's gross quarrying production was about 316 million tons (100%) in 2019; about 53% of that amount, however, is regarded as quarrying waste. With regards to the stone processing stage, we have noticed that the world production has reached 91.15 million tons (29%), and consequently this means that 63.35 million tons of stone-processing scraps is produced. Therefore, we can say that, on a global level, if the quantity of material extracted in the quarry is 100%, the total percentage of waste is about 71%. This raises a substantial problem from the environmental, economical and social point of view. There are essentially three ways of dealing with inorganic waste, namely, reuse, recycling, or disposal in landfills. Reuse and recycling are the preferred waste management methods that consider environmental sustainability and the opportunity to generate important economic returns. Although there are many possible applications for stone waste, they can be summarized into three main general applications, namely, fillers for binders, ceramic formulations, and environmental applications. The use of residual sludge for substrate production seems to be highly promising: the substrate can be used for quarry rehabilitation and in the rehabilitation of industrial sites. This new product (artificial soil) could be included in the list of the materials to use in addition to topsoil for civil works, railway embankments roundabouts and stone sludge wastes could be used for the neutralization of acidic soil to increase the yield. Stone waste is also possible to find several examples of studies for the recovery of mineral residues, including the extraction of metallic elements, and mineral components, the production of construction raw materials, power generation, building materials, and gas and water treatment.

The Economic Effects of the New and Renewable Energies Sector (신재생에너지 부문의 경제적 파급효과 분석)

  • Lim, Seul-Ye;Park, So-Yeon;Yoo, Seung-Hoon
    • Journal of Energy Engineering
    • /
    • v.23 no.4
    • /
    • pp.31-40
    • /
    • 2014
  • The Korean government made the 2nd Energy Basic Plan to achieve 11% of new and renewable energies distribution rate until 2035 as a response to cope with international discussion about greenhouse gas emission reduction. Renewable energies include solar thermal, photovoltaic, bioenergy, wind power, small hydropower, geothermal energy, ocean energy, and waste energy. New energies contain fuel cells, coal gasification and liquefaction, and hydrogen. As public and private investment to enhance the distribution of new and renewable energies, it is necessary to clarify the economic effects of the new and renewable energies sector. To the end, this study attempts to apply an input-output analysis and analyze the economic effects of new and renewable energies sector using 2012 input-output table. Three topics are dealt with. First, production-inducing effect, value-added creation effect, and employment-inducing effect are quantified based on demand-driven model. Second, supply shortage effects are analyzed employing supply-driven model. Lastly, price pervasive effects are investigated applying Leontief price model. The results of this analysis are as follows. First, one won of production or investment in new and renewable energies sector induces 2.1776 won of production and 0.7080 won of value-added. Moreover, the employment-inducing effect of one billion won of production or investment in new and renewable energies sector is estimated to be 9.0337 persons. Second, production shortage cost from one won of supply failure in new and renewable energies sector is calculated to be 1.6314 won, which is not small. Third, the impact of the 10% increase in new and renewable energies rate on the general price level is computed to be 0.0123%, which is small. This information can be utilized in forecasting the economic effects of new and renewable energies sector.

A stratified random sampling design for paddy fields: Optimized stratification and sample allocation for effective spatial modeling and mapping of the impact of climate changes on agricultural system in Korea (농지 공간격자 자료의 층화랜덤샘플링: 농업시스템 기후변화 영향 공간모델링을 위한 국내 농지 최적 층화 및 샘플 수 최적화 연구)

  • Minyoung Lee;Yongeun Kim;Jinsol Hong;Kijong Cho
    • Korean Journal of Environmental Biology
    • /
    • v.39 no.4
    • /
    • pp.526-535
    • /
    • 2021
  • Spatial sampling design plays an important role in GIS-based modeling studies because it increases modeling efficiency while reducing the cost of sampling. In the field of agricultural systems, research demand for high-resolution spatial databased modeling to predict and evaluate climate change impacts is growing rapidly. Accordingly, the need and importance of spatial sampling design are increasing. The purpose of this study was to design spatial sampling of paddy fields (11,386 grids with 1 km spatial resolution) in Korea for use in agricultural spatial modeling. A stratified random sampling design was developed and applied in 2030s, 2050s, and 2080s under two RCP scenarios of 4.5 and 8.5. Twenty-five weather and four soil characteristics were used as stratification variables. Stratification and sample allocation were optimized to ensure minimum sample size under given precision constraints for 16 target variables such as crop yield, greenhouse gas emission, and pest distribution. Precision and accuracy of the sampling were evaluated through sampling simulations based on coefficient of variation (CV) and relative bias, respectively. As a result, the paddy field could be optimized in the range of 5 to 21 strata and 46 to 69 samples. Evaluation results showed that target variables were within precision constraints (CV<0.05 except for crop yield) with low bias values (below 3%). These results can contribute to reducing sampling cost and computation time while having high predictive power. It is expected to be widely used as a representative sample grid in various agriculture spatial modeling studies.

The Latest Progress on the Development of Technologies for $CO_2$ Storage in Marine Geological Structure and its Application in Republic of Korea (해저 지질구조내 $CO_2$ 저장기술의 연구개발 동향 및 향후 국내 실용화 방안)

  • Kang, Seong-Gil;Huh, Cheol
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.11 no.1
    • /
    • pp.24-34
    • /
    • 2008
  • To mitigate the climate change and global warming, various technologies have been internationally proposed for reducing greenhouse gas emissions. Especially, in recent, carbon dioxide capture and storage (CCS) technology is regarded as one of the most promising emission reduction options that $CO_2$ be captured from major point sources (eg., power plant) and transported for storage into the marine geological structure such as deep sea saline aquifer. The purpose of this paper is to review the latest progress on the development of technologies for $CO_2$ storage in marine geological structure and its perspective in republic of Korea. To develop the technologies for $CO_2$ storage in marine geological structure, we carried out relevant R&D project, which cover the initial survey of potentially suitable marine geological structure fur $CO_2$ storage site and monitoring of the stored $CO_2$ behavior, basic design for $CO_2$ transport and storage process including onshore/offshore plant and assessment of potential environmental risk related to $CO_2$ storage in geological structure in republic of Korea. By using the results of the present researches, we can contribute to understanding not only how commercial scale (about 1 $MtCO_2$) deployment of $CO_2$ storage in the marine geological structure of East Sea, Korea, is realized but also how more reliable and safe CCS is achieved. The present study also suggests that it is possible to reduce environmental cost (about 2 trillion Won per year) with developed technology for $CO_2$ storage in marine geological structure until 2050.

  • PDF

A Study on the Characteristics Measurement of Main Engine Exhaust Emission in Training Ship HANBADA (실습선 한바다호 주기관 배기가스 배출물질 특성 고찰에 관한 연구)

  • Choi, Jung-Sik;Lee, Sang-Deuk;Kim, Seong-Yun;Lee, Kyoung-Woo;Chun, Kang-Woo;Nam, Youn-Woo;Jung, Kyun-Sik;Park, Sang-Kyun;Choi, Jae-Hyuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.6
    • /
    • pp.658-665
    • /
    • 2013
  • In this study, we measured particulate matter(PM) which emerged as the hot issue from the International Maritime Organization(IMO) and the exhaust emission using HANBADA, the training ship of Korea Maritime University. In particular, the PM was obtained with TEM grid. PM structure was observed by electron microscopy. And exhaust gases such as NOx, $CO_2$, and CO were measured using the combustion gas analyzer(PG-250A, HORIBA). The results of this study are as follows. 1) When the ship departed from the port, the maximum difference in PM emissions were up to 30 % due to the Bunker Change. 2) Under the steady navigation, emission of PM was $1.34mg/m^3$ when Bunker-A is changing L.R.F.O(3 %). And, at the fixed L.R.F.O (3 %), emission of PM was $1.19mg/m^3$. When the main engine RPM increased up to 20 % with fixed L.R.F.O(3 %), emission of PM was $1.40mg/m^3$. When we changed to low quality oil(L.R.F.O(3 %)), CO concentration from main engine increased about 16 %. On the other hand, when the main engine RPM is rising up to 20 %, CO concentration is increased more than 152 percent. These results imply that the changes of RPM is a dominant factor in exhaust emission although fuel oil type is an important factor. 3) The diameter of PM obtained with TEM grid is about $4{\sim}10{\mu}m$ and its structure shows porous aggregate.