• 제목/요약/키워드: Power semiconductor devices

검색결과 526건 처리시간 0.023초

Complementary FET로 열어가는 반도체 미래 기술 (Complementary FET-The Future of the Semiconductor Transistor)

  • 김상훈;이성현;이왕주;박정우;서동우
    • 전자통신동향분석
    • /
    • 제38권6호
    • /
    • pp.52-61
    • /
    • 2023
  • With semiconductor scaling approaching the physical limits, devices including CMOS (complementary metal-oxide-semiconductor) components have managed to overcome yet are currently struggling with several technical issues like short-channel effects. Evolving from the process node of 22 nm with FinFET (fin field effect transistor), state-of-the-art semiconductor technology has reached the 3 nm node with the GAA-FET (gate-all-around FET), which appropriately addresses the main issues of power, performance, and cost. Technical problems remain regarding the foundry of GAA-FET, and next-generation devices called post-GAA transistors have not yet been devised, except for the CFET (complementary FET). We introduce a CFET that spatially stacks p- and n-channel FETs on the same footprint and describe its structure and fabrication. Technical details like stacking of nanosheets, special spacers, hetero-epitaxy, and selective recess are more thoroughly reviewed than in similar articles on CFET fabrication.

ZnO Power FET 모델링에 관한 연구 (Study on Modeling of ZnO Power FET)

  • 강이구;정헌석
    • 전기전자학회논문지
    • /
    • 제14권4호
    • /
    • pp.277-282
    • /
    • 2010
  • 본 논문에서는 차세대 전력반도체인 화합물 반도체 소자중 ZnO 전력소자에 대하여 모델링을 수행하였다. 화합물 전력 반도체 소자는 와이드 밴드 갭 소자로서 열 특성이 우수해 자동차 및 계통연계형 인버터의 차세대 핵심소자로 인정받고 있다. 모델링 결과 에피 두께가 3um, 도핑농도는 $1e17cm^{-3}$일때 내압 340V 정도 얻을 수 있었으며, 관련 I-V특성 등을 평가하였다. 실제 소자로 제작된다면 300V이내의 산업 응용에 충분히 활용할 수 있을 것으로 판단된다

회로 시뮬레이션을 위한 MOS 제어 다이리스터의 PSPICE 모델 (A Pspice Model of MOS-Controlled Thyrister for Circuit Simlulation)

  • 이영국;현동석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 A
    • /
    • pp.382-384
    • /
    • 1995
  • The advancement of power semiconductor devices has given great attribution to the performance and reliability or power conversion systems. But contemporary power devices have room for improvement. So much interest and endeavor are being applied to develop an improved power devices. The MOS-Controlled Thyristor(MCT)is a recently developed power device which combines four layers thyristor structure and MOS-gate. Owing to advantages compared to other devices in many respects, the MCT attracts much notice recently. Nowadays, in designing and manufacturing power conversion systems, the importance of circuit simulation for reducing cost and time is incensed. And to excute the simulation that resemble the real system as much as possible, to develop a model of power device that provides properly static and dynamic characteristics is important. So, this paper presents a PSPICE model of the MCT considering dynamic characteristics.

  • PDF

실리콘 액정표시 장치 시스템을 위한 00.5μm 이중 게이트 고전압 CMOS 공정 연구 (A Study on the 0.5μm Dual Gate High Voltage CMOS Process for Si Liquid Display System)

  • 송한정
    • 한국전기전자재료학회논문지
    • /
    • 제15권12호
    • /
    • pp.1021-1026
    • /
    • 2002
  • As the development of semiconductor process technology continue to advance, ICs continue their trend toward higher performance low power system-on-chip (SOC). These circuits require on board multi power supply. In this paper, a 0.5 ㎛ dual date oxide CMOS Process technology for multi-power application is demonstrated. 5 V and 20 V devices fabricated by proposed process is measured. From 5 V devices using dual gate precess, we got almost the same characteristics as are obtained from standard 5 V devices. And the characteristics of the 20 V device demonstrates that 3 ㎛ devices with minimum gate length are available without reliability degradation. Electrical parameters in minimum 3 ㎛ devices are 520 ㎂/㎛ current density, 120 ㎷ DIBL, 24 V BV for NMOS and ,350 ㎂/㎛ current density, 180 ㎷ DIBL, 26 V BV for PMOS, respectively.

Application Specific IGCTs

  • Carroll Eric;Oedegrad Bjoern;Stiasny Thomas;Rossinelli Marco
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 Proceedings ICPE 01 2001 International Conference on Power Electronics
    • /
    • pp.31-35
    • /
    • 2001
  • IGCTs have established themselves as the power semiconductor of choice at medium voltage levels within the last few years because of their low conduction and switching losses. The trade-off between these losses can be adjusted by various lifetime control techniques and the growing demand for these devices is driving the need for standard types to cover such applications as Static Circuit Breakers (low on-state) and Medium Voltage Drives (low switching losses). The additional demands of Traction (low operating temperatures) and Current Source Inverters (symmetric blocking) would normally result in conflicting demands on the semiconductor. This paper will outline how a range of power devices can meet these needs with a limited number of wafers and gate units. Some of the key differences between IGCTs and IGBTs will be explained and the outlook for device improvements will be discussed.

  • PDF

Wide band-gap반도체의 물성 및 고주파용 전력소자의 응용 (Materials properties of wide band-gap semiconductors and their application to high speed electronic power devices)

  • 신무환
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제9권9호
    • /
    • pp.969-977
    • /
    • 1996
  • 본고에서는 여러가지 Wide Band-gap중에서 특히 최근에 많은 관심을 끌고 있는 GaN와 4H-SiC, 6H0SiC의 전자기적 물성을 소개하고 현재 이들로부터 제작된 prototype소자들의 성능을 비교함으로써 그 발전현황을 알아보기로 한다. 본고에서 관심을 두는 소자분야는 광전소자(optoelectronic devices)라기보다는 고주파 고출력용 전력소자임을 밝힌다. 아울러 GaN로부터 제작된 MESFET(MEtal Semiconductor Field-Effect Transistor)소자의 고주파 대역에서의 Large-Signal특성을 Device/Circuit Model을 통하여 실험치와 비교하여보고 이로부터 최적화된 channel 구조를 갖는 소자구조에서의 RF특성을 조사한다.

  • PDF

A Novel Soft Switching PWM·PFC AC·DC Boost Converter

  • Sahin, Yakup
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권1호
    • /
    • pp.256-262
    • /
    • 2018
  • This study introduces a novel Soft Switching (SS) Pulse Width Modulated (PWM) AC-DC boost converter. In the proposed converter, the main switch is turned on with Zero Voltage Transition (ZVT) and turned off with Zero Current Transition (ZCT). The main diode is turned on with Zero Voltage Switching (ZVS) and turned off with Zero Current Switching (ZCS). The auxiliary switch is turned on and off with ZCS. All auxiliary semiconductor devices are turned on and off with SS. There is no extra current or voltage stress on the main semiconductor devices. The majority of switching energies are transferred to the output by auxiliary transformer. Thus, the current stress of auxiliary switch is significantly reduced. Besides, the proposed converter has simple structure and ease of control due to common ground. The theoretical analysis of the proposed converter is verified by a prototype with 100 kHz switching frequency and 500 W output power. Furthermore, the efficiency of the proposed converter is 98.9% at nominal output power.

GaN FET를 적용한 인터리브 CRM PFC의 효율특성에 관한 연구 (A Study on the Efficiency Characteristics of the Interleaved CRM PFC using GaN FET)

  • 안태영;장진행;길용만
    • 전력전자학회논문지
    • /
    • 제20권1호
    • /
    • pp.65-71
    • /
    • 2015
  • This paper presents the efficiency analysis of a critical current mode interleaved PFC rectifier, in which each of three different semiconductor switches is employed as the active switch. The Si FET, SiC FET, and GaN FET are consecutively used with the prototype PFC rectifier, and the efficiency of the PFC rectifier with each different semiconductor switch is analyzed. An equivalent circuit model of the PFC rectifier, which incorporates all the internal losses of the PFC rectifier, is developed. The rms values of the current waveforms main circuit components are calculated. By adapting the rms current waveforms to the equivalent model, all the losses are broken down and individually analyzed to assess the conduction loss, switching loss, and magnetic loss in the PFC rectifier. This study revealed that the GaN FET offers the highest overall efficiency with the least loss among the three switching devices. The GaN FET yields 96% efficiency at 90 V input and 97.6% efficiency at 240 V, under full load condition. This paper also confirmed that the efficiency of the three switching devices largely depends on the turn-on resistance and parasitic capacitance of the respective switching devices.

박막의 조성비율에 따른 유기태양전지의 효율성 연구 (A Study about the Efficiency of Organic Photovoltaic Device as a function of the Material Concentration)

  • 김승주;이동근;박재형;공수철;김원기;류상욱
    • 반도체디스플레이기술학회지
    • /
    • 제8권3호
    • /
    • pp.1-5
    • /
    • 2009
  • In this study, we have shown the power conversion efficiency of organic thin film photovoltaic devices utilizing a conjugated polymer/fullerene bulk-hetero junction structure. We use MDMO-PPV(Poly[2-methoxy-5-(3,7-dimethyloctyloxy -1,4-phenylenevinylene) as an electron donor, PCBM([6,6]-Phenyl C61 butyric acid methyl ester) as an electron accepter, and PEDOT:PSS used as a HTL(Hole Transport Layer). We have fabricated OPV(Organic Photovoltaic) devices as a function of the MDMO-PPV/PCBM concentration from 1:1 to 1:5. The electrical characteristics of the fabricated devices were investigated by means of I-V, P-V, F·F(Fill Factor) and PCE(power conversion efficiency). The power conversion efficiency was gradually increased until 1:4 ratio, also the highest efficiency of 0.4996% was obtained at the ratio.

  • PDF