A Study about the Efficiency of Organic Photovoltaic Device as a function of the Material Concentration

박막의 조성비율에 따른 유기태양전지의 효율성 연구

  • Kim, Seung-Ju (Department of Electronics Engineering, Dankook University) ;
  • Lee, Dong-Keun (Department of Electronics Engineering, Dankook University) ;
  • Park, Jae-Hyung (Department of Electronics Engineering, Dankook University) ;
  • Gong, Su-Cheol (Department of Electronics Engineering, Dankook University) ;
  • Kim, Won-Ki (Department of Electronics Engineering, Dankook University) ;
  • Ryu, Sang-Ouk (Department of Electronics Engineering, Dankook University)
  • 김승주 (단국대학교 전자공학과) ;
  • 이동근 (단국대학교 전자공학과) ;
  • 박재형 (단국대학교 전자공학과) ;
  • 공수철 (단국대학교 전자공학과) ;
  • 김원기 (단국대학교 전자공학과) ;
  • 류상욱 (단국대학교 전자공학과)
  • Published : 2009.09.30

Abstract

In this study, we have shown the power conversion efficiency of organic thin film photovoltaic devices utilizing a conjugated polymer/fullerene bulk-hetero junction structure. We use MDMO-PPV(Poly[2-methoxy-5-(3,7-dimethyloctyloxy -1,4-phenylenevinylene) as an electron donor, PCBM([6,6]-Phenyl C61 butyric acid methyl ester) as an electron accepter, and PEDOT:PSS used as a HTL(Hole Transport Layer). We have fabricated OPV(Organic Photovoltaic) devices as a function of the MDMO-PPV/PCBM concentration from 1:1 to 1:5. The electrical characteristics of the fabricated devices were investigated by means of I-V, P-V, F·F(Fill Factor) and PCE(power conversion efficiency). The power conversion efficiency was gradually increased until 1:4 ratio, also the highest efficiency of 0.4996% was obtained at the ratio.

Keywords

References

  1. Organic Photovoltaics: Concepts and Realization, C. J. Brabec, V. Dyakonov, J. Parisi, and N. S. Saricftci (Springer, Heidelberg, 2003).
  2. C. J. Brabec, J. C. Hummelen, and N. S Sariciftci, Adv. Funct. Mater. 11, 15, 2001. https://doi.org/10.1002/1616-3028(200102)11:1<15::AID-ADFM15>3.0.CO;2-A
  3. P. J. Reucroft, K. Takahashi, and H. Ullal, Appl. Phys. Lett., 25, 664, 1974. https://doi.org/10.1063/1.1655352
  4. J. R. Waldrop, M. J. Cohen, A. J. Heeger, and A. G. MacDiarmid, Appl. Phys. Lett., 38, 53, 1981. https://doi.org/10.1063/1.92130
  5. M. Pope, H. P. Kallmann, and P. Magnate, J. Chem. Phy., 38, 2042, 1963. https://doi.org/10.1063/1.1733929
  6. C. W. Tang, Appl. Phys. Lett., 48, 183, 1986. https://doi.org/10.1063/1.96937
  7. G. Yu, J. Gao, J. C. Hummelen, F. Wudl and A. J. Heeger, Science, 270, 1789, 1998.
  8. P. Peumans, V. Bulovic and S. R. Forrest, Appl. Phys. Lett., 76, 2650, 2000. https://doi.org/10.1063/1.126433
  9. 이재형, 임동건, 이준신, 홍릉과학출판사, 태양전지원론, 101-124p.
  10. S. J. Moon and H. J. Kim, Polym. Sci. Tech., 17, 407, 2006.
  11. S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz, and J. C. Mummelen, Appl. Phys. Lett., 78, 841, 2001. https://doi.org/10.1063/1.1345834
  12. T. Munters, T. Martens, L. Goris, V. Vrindts and J. Manca. Thin Solid Films, 403-404, 2002.