• 제목/요약/키워드: Power semiconductor devices

검색결과 526건 처리시간 0.028초

고전압 4H-SiC DiMOSFET 제작을 위한 최적화 simulation (Optimization simulation for High Voltage 4H-SiC DiMOSFET fabrication)

  • 김상철;방욱;김남균;김은동
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 하계학술대회 논문집 Vol.5 No.1
    • /
    • pp.353-356
    • /
    • 2004
  • This paper discribes the analysis of the I-V characteristics of 4H-SiC DiMOSFET with single epi-layer Silicon Carbide has been around for over a century. However, only in the past two to three decades has its semiconducting properties been sufficently studied and applied, especially for high-power and high frequency devices. We present a numerical simulation-based optimization of DiMOSFET using the general-purpose device simulator MINIMIS-NT. For simulation, a loin thick drift layer with doping concentration of $5{\times}10^{15}/cm^3$ was chosen for 1000V blocking voltage design. The simulation results were used to calculate Baliga's figure of Merit (BFOM) as the criterion structure optimization and comparison.

  • PDF

고전계 하에서 반도체 연면방전 특성 (The Characteristics of Surface Flashover on the Semiconductor in High Electric-Field)

  • 이세훈;이충식
    • 조명전기설비학회논문지
    • /
    • 제16권1호
    • /
    • pp.35-43
    • /
    • 2002
  • 새로운 형태의 고체 상태의 대전력, 고속전자장치인 광전도 전력스위치(PCPS)의 개발과 대전력 및 고전압 상태하에서 광전도 전력스위치의 고전계 동작특성을 규명하기 위해서 많은 연구가 행해지고 있다. 그러나 표면 섬락 현상이 확실하고 효과 있는 고속, 고압스위칭 소자의 실현을 방해하고 있다. 이러한 연면방전의 물리적 현상의 명백한 이해는 새로운 기술과 소자구성을 발전시키는데 매우 중요할 뿐 아니라, 고전계·고전압에서의 동작특성을 향상시키는데 있어서도 특별한 의미를 가진다. 뿐만 아니라 고전계, 고전력 소자들을 안전하게 동작할 수 있게 하기 위해서도 필요하다. 연면방전 및 표면 절연파괴현상은 반도체 벌크 파괴 전계보다 훨씬 낮은 전계에서 적용되어 파괴된 모든 소자들에서 발생하기 때문에 이러한 문제를 해결하는 매우 실용적인 방법이 소자의 표면을 절연물로 페시베이션하는 것이다. 페시베이션된 소자들은 고전계에서 언페시페이션된 소자에 비해 매우 좋은 동작특성을 나타내므로, 본 논문에서는 페시베이션된 소자와 언페시베이션된 소자간의 I-E특성과 파괴 메커니즘을 규명하고 더 나아가 다중 페시베이션에 대한 몇몇 특성 값을 제시한다.

RECENT TRENDS OF POWER ELECTRONIC INDUSTRY IN CHINA

  • Qian, Z.M.;He, X.
    • 전력전자학회논문지
    • /
    • 제1권1호
    • /
    • pp.1-6
    • /
    • 1996
  • Recent trends of the power electronic industry in China have been summarized in this paper. Based on the applications of the power electronic products in the chinese industries the production trends of power semiconductor devices, drives, power supplies, power electronic industry used in power systems in China have been briefly reviewed.

  • PDF

전력용 IGBT의 시뮬레이션과 과도 해석 (Simulation of Power IGBT and Transient Analysis)

  • 서영수
    • 한국시뮬레이션학회논문지
    • /
    • 제4권2호
    • /
    • pp.41-60
    • /
    • 1995
  • The IGBT(Insulated Gate Bipolar Transistor) is a power semiconductor device that has gained acceptance among circuit design engineers for motor drive and power converter applications. IGBT devices(International Rectifier, Proposed proposed model etc) have the best features of both power MOSFETs and power bipolar transistors, i.e., efficient voltage gate drive requirememts and high current density capability. When designing circuit and systems that utilize IGBTs or other power semiconductor devices, circuit simulations are needed to examine how the devices affect the behavior of the circuit. The interaction of the IGBT with the load circuit can be described using the device model and the state equation of the load circuit. The voltage rise rate at turn-off for inductive loads varies significantly for IGBTs with different base life times, and this rate of rise is important in determing the voltage overshoot for a given series resistor-inductor load circuit. Excessive voltage overshoot is potentially destructive, so a snubber protection circuit may be required. The protection circuit requirements are unique for the IGBT and can be examined using the model. The IGBT model in this paper is verified by comparing the results of the model with experimented results for various circuit operating conditions. The model performs well and describes experimented results accurately for the range of static and dynamic condition in which the device is intended to be operated.

  • PDF

Large Signal Determination of Non-Linear Output Capacitance of Gallium-Nitride Field Effect Transistors from Switch-Off Voltage Transients - A Numerical Method

  • Pentz, David;Joannou, Andrea
    • Journal of Power Electronics
    • /
    • 제18권6호
    • /
    • pp.1912-1919
    • /
    • 2018
  • The output capacitance of power semiconductor devices is important in determining the switching losses and in the operation of some resonant converter topologies. Thus, it is important to be able to accurately determine the output capacitance of a particular device operating at elevated power levels so that the contribution of the output capacitance discharge to switch-on losses can be determined under these conditions. Power semiconductor switch manufacturers usually measure device output capacitance using small-signal methods that may be insufficient for power switching applications. This paper shows how first principle methods are applied in a novel way to obtain more relevant large signal output capacitances of Gallium-Nitride (GaN) FETs using the drain-source voltage transient during device switch-off numerically. A non-linear capacitance for an increase in voltage is determined with good correlation. Simulations are verified using experimental results from two different devices. It is shown that the large signal output capacitance as a function of the drain-source voltage is higher than the small signal values published in the data sheets for each of the devices. It can also be seen that the loss contribution of the output capacitance discharging in the channel during switch-on correlates well with other methods proposed in the literature, which confirms that the proposed method has merit.

전류형 PWM 인버터에 의한 고조파 저감에 관한 연구 (A Study on the Reduction of harmonics by Current type PWM - Inverter)

  • 이계호;장영학;양승학;정영극
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1987년도 정기총회 및 창립40주년기념 학술대회 학회본부
    • /
    • pp.359-361
    • /
    • 1987
  • It is known that the reactive component of AC power in the Power system gives no energy to outside and causes enlargement of power apparatus, voltage fluctuation and unstability of power system. The power conversion system and control system which are composed of power semiconductor devices such as Thyrisor, transistor, GTO and so on have been appeared as new sources of Harmonics. So the reduction of harmonics in power semiconductor system is one of impending problems on the point of energy conservation and improvement of power factor. This paper treates the fundamental review of the harmonics reduction by Current type PWM-Inverter. This Inverter-detects not only the fundamental wave but also that of all harmonics created in the power semiconductor system and is scheduled to control by sampled value.

  • PDF

고에너지 전고체 전해질을 위한 나노스케일 이종구조 계면 특성 (Nanoscale Characterization of a Heterostructure Interface Properties for High-Energy All-Solid-State Electrolytes )

  • 황성원
    • 반도체디스플레이기술학회지
    • /
    • 제22권1호
    • /
    • pp.28-32
    • /
    • 2023
  • Recently, the use of stable lithium nanostructures as substrates and electrodes for secondary batteries can be a fundamental alternative to the development of next-generation system semiconductor devices. However, lithium structures pose safety concerns by severely limiting battery life due to the growth of Li dendrites during rapid charge/discharge cycles. Also, enabling long cyclability of high-voltage oxide cathodes is a persistent challenge for all-solid-state batteries, largely because of their poor interfacial stabilities against oxide solid electrolytes. For the development of next-generation system semiconductor devices, solid electrolyte nanostructures, which are used in high-density micro-energy storage devices and avoid the instability of liquid electrolytes, can be promising alternatives for next-generation batteries. Nevertheless, poor lithium ion conductivity and structural defects at room temperature have been pointed out as limitations. In this study, a low-dimensional Graphene Oxide (GO) structure was applied to demonstrate stable operation characteristics based on Li+ ion conductivity and excellent electrochemical performance. The low-dimensional structure of GO-based solid electrolytes can provide an important strategy for stable scalable solid-state power system semiconductor applications at room temperature. The device using uncoated bare NCA delivers a low capacity of 89 mA h g-1, while the cell using GO-coated NCA delivers a high capacity of 158 mA h g−1 and a low polarization. A full Li GO-based device was fabricated to demonstrate the practicality of the modified Li structure using the Li-GO heterointerface. This study promises that the lowdimensional structure of Li-GO can be an effective approach for the stabilization of solid-state power system semiconductor architectures.

  • PDF

DESIRABLE PARAMETER IDENTIFICATION FOR THE IMPLEMENTATION OF IDEAL PASSIVE FAULT CURRENT LIMITER FOR THE PROTECTION OF POWER SEMICONDUCTOR DEVICES

  • Mukhopadhyay, S.C.;Iwahara, M.;Yamada, S.;Dawson, F.P.
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1998년도 Proceedings ICPE 98 1998 International Conference on Power Electronics
    • /
    • pp.859-864
    • /
    • 1998
  • Compact and small size, reliable and failsafe operation and low cost featuring fault current limiter causing the designer to take a close look into the use of passive fault current limiter(FCL) for the protection of power semiconductor devices in power electronic systems. This paper has identified the main parameters responsible for the development of ideal passive magnetic current limiter. The effect of those parameters on the range of operation and the voltage-current characteristics of the magnetic current limiter has been studied using tableau approach. Desirable characteristics are discussed and the simulation results are presented.

  • PDF

GaN-SBD를 이용한 RF-DC 변환기 회로 분석 (An Analysis of RF-DC Converter Circuits with GaN Schottky Barrier Diodes)

  • 손명식
    • 반도체디스플레이기술학회지
    • /
    • 제20권4호
    • /
    • pp.68-71
    • /
    • 2021
  • In this paper, GaN-SBD devices with excellent breakdown voltage and frequency characteristics for use in high-power microwave wireless power transmission has been modeled for PSpice circuit simulation. The RF-DC conversion circuits were simulated and compared with a commercial Si-SBD device. Although the modeled GaN-SBD devices had lower RF-DC conversion efficiency compared to Si-SBD at 2.4 and 5.8 GHz, it was confirmed through PSpice circuit simulations that they can be used sufficiently according to the required application circuit in a high power situation.

전원장치 및 반도체 변환장치 관련 국제규격에 관한 연구 (A Study on International Standards Related to Power Supplies and Semiconductor Convertors)

  • 홍순찬;이주훈;이주훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 F
    • /
    • pp.2659-2661
    • /
    • 1999
  • This paper studies the scope and object of international standards related to power supplies and semiconductor convertors. IEC 60478 and IEC 60686 are international standards for stabilized power supplies with DC and AC output, respectively, and IEC 61204 for low-voltage power supply devices with DC output. IEC 60146 : Semiconductor Convertors is a representative international standard in the field of semiconductor convertors. In this field, there are some international standards such as IEC 60971. IEC 61136-1. IEC 61800. and etc.. In this paper, IEC 60686, 60971, 61136-1, and 61240 are mainly studied.

  • PDF