• Title/Summary/Keyword: Power loss reduction

Search Result 434, Processing Time 0.026 seconds

A Study on System Stability Improvement of Power System with High Speed Electric Railway Using STATCOM (STATCOM을 이용한 고속전철 부하가 연계된 계통의 안정도 향상에 관한 연구)

  • 이준경;오재경;김진오
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.11
    • /
    • pp.625-631
    • /
    • 2003
  • The purpose of this paper is to assess experimentally system stability of the 154 ㎸ transmission system due to the current of the forthcoming AC High-Speed Railway (HSR) era. It introduces a simple method to evaluate the system stability The proposed method also shows the relationship between stability and power losses, and the stability indices made by the numerical process proposed in this paper will be used to assess whether a system can be stabilized or not. This paper also presents the improvement of the stability via loss reduction using STATCOM. Reactive power compensation is often the most effective way to improve both power transfer capability and system stability. The suitable modeling of the electric railway system should be applicable to the PSS/E. In the case study the proposed method is tested on a practical system of the Korea Electric Power Corporation (KEPCO) which will be expected to accommodate the heavy HSR load. Furthermore, it prove that the compensation of voltage drop and its by-product, loss reduction is closely related to improvement of system stability.

Comparative Performance Evaluation of 10kV IGCTs in 3L ANPC and TNPC Converters in PMSG MV Wind Turbines (PMSG 풍력발전기용 3L ANPC와 TNPC 컨버터에서의 10kV IGCT 성능 비교 평가)

  • Lyngdoh, Amreena Lama;Suh, Yongsug;Park, Byoung-Gun;Kim, Jiwon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.6
    • /
    • pp.419-427
    • /
    • 2019
  • Several multilevel converter topologies have been proposed and compared. The three-level (3L) neutral-point-clamped (NPC) topology is promising and widely accepted. However, this topology suffers from uneven loss distribution among switches due to its fixed switching strategy. The 3L active NPC (ANPC) topology, which exhibits improved loss distribution profile, was proposed to address this disadvantage. The 3L T-NPC topology, a hybrid configuration of 2L and 3L NPC topologies, was introduced to address not only the loss distribution problem but also the reduction in the number of switches. In the present research, the application of these three topologies in PMSG-based medium-voltage wind turbines was investigated. The power devices considered were 10 kV IGCTs. Performance was evaluated in terms of a power loss of 10 kV IGCT for each NPC topology, which is a crucial indicator of thermal behavior, reliability, cost, and lifetime of any converter. The comparison was performed using ABB make 10 kV IGCT 5SHY17L9000 and the simulation tool PLECS.

Effect of Oil Supply Direction on Power Loss and Bearing Temperature of Elliptical Bearing (오일공급 방향에 따른 타원형 베어링 손실 및 온도 특성)

  • Bang, Kyungbo;Choi, Yonghoon;Cho, Yongju
    • Tribology and Lubricants
    • /
    • v.34 no.4
    • /
    • pp.138-145
    • /
    • 2018
  • Elliptical bearings are widely used for large steam turbines owing to their excellent load carrying capacity and good dynamic stability. Power loss in bearings is an extremely important parameter, especially for high turbine capacities. Optimization of operation conditions and design variables such as bearing clearance and bearing length can reduce the power loss in elliptical bearings. Although changes in the oil supply method have served to increase the efficiency of the tilting pad journal bearing, it has not explicitly improved elliptical bearings. In this study, we verify the static characteristics of an elliptical bearing by changing the direction of oil supply. We evaluate the bearing power loss and bearing metal temperature, and compare the bearing performance and reliability in different test cases. The direction of oil supply is $90^{\circ}$ (9 o'clock) and $270^{\circ}$ (3 o'clock) when the rotor rotates in a counterclockwise direction. We use an elliptical bearing with an inner diameter and active length of 220.30 and 110.00 mm, respectively. Bearing power loss and bearing metal temperatures are measured and evaluated by rotor rotational speed, oil flow rate, and bearing load. The results reveal a 20 reduction in the power loss when the direction of oil supply is 90. Furthermore, the oil film on the upper part of the bearing has a high temperature when the direction of oil supply is $90^{\circ}$. In contrast, when the direction of oil supply is $270^{\circ}$, the oil film on the upper part of the bearing is relatively cold.

A Low Power scan Design Architecture (저전력을 고려한 스캔 체인 구조 변경)

  • Min, Hyoung-Bok;Kim, In-Soo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.7
    • /
    • pp.458-461
    • /
    • 2005
  • Power dissipated during test application is substantially higher than power dissipated during functional operation which can decrease the reliability and lead to yield loss. This paper presents a new technique for power minimization during test application in full scan sequential circuits. This paper shows freezing of combinational logic parts during scan shift operation in test mode. The freezing technique leads to power to minimization. Significant power reduction in the scan techniques is achieved on ISCAS 89 benchmarks.

Optimum Hydraulic Oil Viscosity Based on Slipper Model Simulation for Swashplate Axial Piston Pumps/Motors

  • Kazama, Toshiharu
    • Journal of Drive and Control
    • /
    • v.18 no.4
    • /
    • pp.84-90
    • /
    • 2021
  • Viscosity of hydraulic oils decreases due to loss reduction and efficiency increase of fluid power systems. However, low viscosity is not always appropriate due to the induction of large leakage and small lubricity. Therefore, a detailed study on the optimum viscosity of hydraulic oils is necessary. In this study, based on the thermohydrodynamic lubrication theory, numerical simulation was conducted using the slipper model of swashplate-type axial piston pumps and motors. The viscosity grades' (VG) effects of oils on power losses are mainly discussed numerically in fluid film lubrication, including changes in temperature and viscosity. The simulation results reveal that the flow rate increases and the friction torque decreases as VG decreases. The film temperature and power loss were minimised for a specific oil with a VG. The minimum conditions regarding the temperature and loss were different and closed. Under various operating conditions, the film temperature and power loss were minimised, suggesting that an optimum hydraulic oil with a specific VG could be selected for given operating conditions of pressure and speed. Otherwise, a preferable operating condition must be established to determine a specific VG oil.

Three Phase GTO PWM Inverter Using the Energy Recovery Snubber Circuit (에너지 회생 방식 스너버 회로를 각는 3상 GTO PWM 인버터)

  • 신병철;강경호;차재현;차득근;김명현
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.255-259
    • /
    • 1998
  • This paper is proposed three phase GTO PWM Inverter with energy recovery snubber circuit. The proposed energy recovery snubber circuit effective in reduction of the power loss in the Inverter system than asymmetry GTO snubber circuit.

  • PDF

Information Propagation Neural Networks for Reduction of Power-Loss (전력손실 감소를 위한 정보전파응용구조 신경회로망)

  • Kim, Jong-Man;Kim, Won-Sup;Lim, Sung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2546-2549
    • /
    • 2004
  • For Reduction of Power-Loss, a new Lateral Information Propagation Networks(LIPN) has been proposed. Damaged insulator is reduced the rate of insulation extremely, and taken the results dirty and injured. It is necessary to be actions that detect the damaged insulator and exchange the new one. And thus, we have designed the LIPN to be detected that insulators by the real time computation method through the inter-node diffusion. In the network, a node corresponds to a state in the quantized input space. Each node is composed of a processing unit and fixed weights from its neighbor nodes as well as its input terminal. Information propagates among neighbor nodes laterally and inter-node interrelation is achieved. Through the results of simulation experiments, we difine the ability of real-time detecting the damaged insulators.

  • PDF

Integrating Operation of Dispersed Generation to Automation Distribution Center for Distribution Network Reconfiguration

  • Park, Joon-Ho;Kim, Jae-Chul;Moon, Seung-Il
    • KIEE International Transactions on Power Engineering
    • /
    • v.2A no.3
    • /
    • pp.102-108
    • /
    • 2002
  • Due to the many attractive aspects of DG in the future power distribution system, distribution automation will be a center hub of integration of the distribution system and resources to satisfy the various needs of customers in a competitive and deregulated environment. In this paper, operation strategies are presented which use network reconfiguration of the automated distribution systems with DG as a real-time operation tool for loss reduction and service restoration from the view of distribution operation. The algorithms and operation strategies of an automated distribution system with DG are introduced to achieve the positive effects of DG in distribution systems. A simple case study shows the effectiveness of the proposed operation strategies.

Enhancement of energy efficiency of 3-phase inverter using LFS UMOSFET

  • Cheon, Jin-Hee;Kim, Kwang-Soo
    • Journal of IKEEE
    • /
    • v.24 no.3
    • /
    • pp.677-684
    • /
    • 2020
  • In this paper, the energy efficiency of a 4H-SiC UMOSFET with a local floating superjunction (LFS UMOSFET) was compared with a conventional P-shielding UMOSFET. For analysis, P-shielding UMOSFET and LFS UMOSFET were modeled for energy loss and junction temperature. As a result, LFS UMOSFET showed switching loss reduction of 20.6%. In addition, it was confirmed that LFS UMOSFET is applied to a 3-phase inverter, resulting in 33.2% lower power efficiency and 28.1% lower junction temperature than P-shielding UMOSFET. Electrical characteristics were simulated using Sentaurus TCAD, and the power circuit was simulated with the modelled UMOSFET using PSIM, a power circuit simulator.