• 제목/요약/키워드: Power factor correction (PFC) boost converter

검색결과 115건 처리시간 0.027초

Characteristics of a High Power Factor Boost Converter with Continuous Current Mode Control

  • Kim, Cherl-Jin;Jang, Jun-Young
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제4B권2호
    • /
    • pp.65-72
    • /
    • 2004
  • Switching power supply systems are widely used in many industrial fields. Power factor correction (PFC) circuits have a tendency to be applied in new power supply designs. The input active power factor correction (APFC) circuits can be implemented in either the two-stage approach or the single-stage approach. The two-stage approach can be classified into boost type PFC circuit and dc/dc converter. The power factor correction circuit with a boost converter used as an input power source is studied in this paper. In a boost power factor correction circuit there are two feedback control loops, which are a current feedback loop and a voltage feedback loop. In this paper, the regulation performance of output voltage and compensator to improve the transient response presented at the continuous conduction mode (CCM) of the boost PFC circuit is analyzed. The validity of designed boost PFC circuit is confirmed by MATLAB simulation and experimental results.

2상 인터리브드 부스트 PFC의 전류 리플 해석 (Analysis of Current Ripple for Two-Phase Interleaved Boost PFC)

  • 김정훈;전태현
    • 전기학회논문지P
    • /
    • 제61권3호
    • /
    • pp.122-128
    • /
    • 2012
  • An interleaved boost converter has many advantages such as current ripple reduction, switching effective double, etc. Due to these advantages, the interleaved boost converter applies to the power factor correction circuit. However, there are almost no analysis results because the input voltage and current are time-varying system in the power factor correction application. Therefore, in this paper, the current ripples of the power factor correction circuit using single-phase boost dc-dc converter and 2-phase interleaved boost dc-dc converter are compared and analyzed in detail. In order to verify the validity, computer simulation and experimental are performed.

Interleaved Boost-Flyback Converter with Boundary Conduction Mode for Power Factor Correction

  • Lin, Bor-Ren;Chien, Chih-Cheng
    • Journal of Power Electronics
    • /
    • 제12권5호
    • /
    • pp.708-714
    • /
    • 2012
  • This paper presents a new interleaved pulse-width modulation (PWM) boost-flyback converter to achieve power factor correction (PFC) and regulate DC bus voltage. The adopted boost-flyback converter has a high voltage conversion ratio to overcome the limit of conventional boost or buck-boost converter with narrow turn-off period. The proposed converter has wide turn-off period compared with a conventional boost converter. Thus, the higher output voltage can be achieved in the proposed converter. The interleaved PWM can further reduce the input and output ripple currents such that the sizes of inductor and capacitor are reduced. Since boundary conduction mode (BCM) is adopted to achieve power factor correction, power switches are turned on at zero current switching (ZCS) and switching losses are reduced. The circuit configuration, principle operation, system analysis, and design consideration of the proposed converter are presented in detail. Finally, experiments conducted on a laboratory prototype rated at 500W were presented to verify the effectiveness of the converter.

고조파 저감을 위한 소프트 스위칭 승압형 PFC컨버터의 특성해석 (Characteristics analysis of PFC boost converter with soft switching for harmonics reduction)

  • 김봉규
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2000년도 전력전자학술대회 논문집
    • /
    • pp.150-154
    • /
    • 2000
  • This paper proposes PFC boost converter with soft switching for harmonics decrement and analyzes characteristics of PFC boost converter. In this technique power factor correction(PFC) is usually obtained by operating the PFC stage in the discontinuous current mode(DCM) Switching devices are operated for reducing current stress and electronical noise. As a result eliminate 3rd harmonic component and high power factor(PF) of the input line are verified by characteristics analysis and experimental results.

  • PDF

Nonlinear Representation of Two-Stage Power-Factor-Correction AC/DC Circuits

  • Orabi Mohamed;Ninomiya Tamotsu
    • Journal of Power Electronics
    • /
    • 제4권4호
    • /
    • pp.197-204
    • /
    • 2004
  • Two-stage Power-Factor-Correction (PFC) converters are the most common circuits for drawing sinusoidal and in phase current waveforms from an ac source with a good regulated output voltage. The first stage is a boost PFC converter with average-current-mode control for achieving the near-unity power factor and the second stage is a forward converter with voltage-mode control to regulate the output voltage. Stability analysis and design methods of two-stage PFC converters have previously been discussed using linear models. Recently, new nonlinear phenomena have been detected in pre-regulator boost PFC circuits and a new nonlinear model has been proposed for pre-regulated PFC converters. Therefore, investigation of two-stage PFC converters from the nonlinear viewpoint becomes important because the second stage DC/DC converter adds more complexity to the circuit. So, this paper introduces a study of the stability of two-stage PFC converters. A novel nonlinear model of two-stage PFC converters is proposed. Then, a stability analysis is made based upon this nonlinear model. The high correspondence between the simulated and experimental results confirms our analysis.

An FPGA-based Fully Digital Controller for Boost PFC Converter

  • Lai, Li;Luo, Ping
    • Journal of Power Electronics
    • /
    • 제15권3호
    • /
    • pp.644-651
    • /
    • 2015
  • This paper introduces a novel digital one cycle control (DOCC) boost power factor correction (PFC) converter. The proposed PFC converter realizes the FPGA-based DOCC control approach for single-phase PFC rectifiers without input voltage sensing or a complicated two-loop compensation design. It can also achieve a high power factor and the operation of low harmonic input current ingredients over universal loads in continuous conduction mode. The trailing triangle modulation adopted in this approach makes the acquisition of the average input current an easy process. The controller implementation is based on a boost topology power circuit with low speed, low-resolution A/D converters, and economical FPGA development board. Experimental results demonstrate that the proposed PFC rectifier can obtain a PF value of up to 0.999 and a minimum THD of at least 1.9% using a 120W prototype.

부스트 능동 역률개선 컨버터의 특성 (Characteristics of Boost Active Power Factor Correction Converter)

  • 장준영;인치호
    • 제어로봇시스템학회논문지
    • /
    • 제21권12호
    • /
    • pp.1152-1159
    • /
    • 2015
  • Switching power supply systems are widely used in many industrial fields. Power factor correction (PFC) circuits have a tendency to be applied in new power supply designs. The PFC circuit with a boost converter using an input power source is studied in this paper. In a boost PFC circuit, there are two feedback control loops: a current feedback loop and a voltage feedback loop. In this paper, the regulation performance gained by using the output voltage and compensator to improve the transient response presented at the continuous conduction mode (CCM) of the boost PFC circuit is analyzed. The validity of the designed boost PFC circuit is confirmed by both MATLAB simulation and experimental results.

개선된 AC/DC PFC ZVT Boost 컨버터 (Improved AC/DC PFC ZVT Boost Converter)

  • 유종규;김용;배진용;이은영;조규만
    • 조명전기설비학회논문지
    • /
    • 제19권8호
    • /
    • pp.62-69
    • /
    • 2005
  • 본 논문에서는 보조 스위치의 하드 스위칭 문제를 개선한 AC/DC PFC(Power-Factor-Correction) ZVT(Zero-Voltage-Transition) Boost 컨버터에 관하여 논하였다. 기존의 AC/DC PFC ZVT Boost 컨버터는 주 스위치 턴온 시 보조 스위치를 함께 동작시켜 경부하시에도 강제적으로 영전압 스위칭이 가능하게 함으로써 전 부하범위에서 주 스위치 손실을 저감하였다. 그러나 보조 스위치에서의 손실이 크며 주 스위치의 턴온시 역방향 전류가 증가하는 문제점을 지닌다. 따라서 본 연구에서는 기존의 ZVT 컨버터에 단지 하나의 다이오드를 추가함으로써 보조 스위치의 전류 스트레스 및 주 스위치의 턴온시 역방향 전류를 감소시키게 되어 효율 향상을 기할 수 있었다. 본 논문에서는 MOSFET를 사용하여 640[W]급 시작품을 제작, 100[kHz]에서 실험하였다.

A Novel Boost PFC Converter Employing ZVS Based Compound Active Clamping Technique with EMI Filter

  • Mohan, P. Ram;Kumar, M. Vijaya;Reddy, O.V. Raghava
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제8권1호
    • /
    • pp.85-91
    • /
    • 2008
  • A Boost Power Factor Correction (PFC) Converter employing Zero Voltage Switching (ZVS) based Compound Active Clamping (CAC) technique is presented in this paper. An Electro Magnetic Interference (EMI) Filer is connected at the line side of the proposed converter to suppress Electro Magnetic Interference. The proposed converter can effectively reduce the losses caused by diode reverse recovery. Both the main switch and the auxiliary switch can achieve soft switching i.e. ZVS under certain condition. The parasitic oscillation caused by the parasitic capacitance of the boost diode is eliminated. The voltage on the main switch, the auxiliary switch and the boost diode are clamped. The principle of operation, design and simulation results are presented here. A prototype of the proposed converter is built and tested for low input voltage i.e. 15V AC supply and the experimental results are obtained. The power factor at the line side of the converter and the converter efficiency are improved using the proposed technique.

10kW급 HVAC 시스템을 위한 Enhanced Interleaved PFC Boost 컨버터 형태의 650V IPM 개발 (Development of Enhanced Interleaved PFC Boost Converter typed 650V Intelligent Power Module for up to 10kW HVAC Systems)

  • 이기현;홍승현;김태현;정진용;권태성
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2018년도 전력전자학술대회
    • /
    • pp.536-538
    • /
    • 2018
  • This paper introduces an enhanced interleaved (IL) PFC (Power Factor Correction) boost converter typed 650V Intelligent Power Module (IPM), which is fully optimized hybrid IGBT converter modules; Silicon (Si) IGBT and Silicon Carbide (SiC) diode, for up to 10kW HVAC (Heating, Ventilation, and Air Conditioning) systems. It utilizes newly developed $4^{th}$ Generation Field Stop (FS) trench IGBTs, $EXTREMEFAST^{TM}$ anti-paralleled diodes, SiC Junction Barrier Schottky (JBS) diodes, Bridge rectifiers, Multi-function LVIC, and Built-in thermistor provide good reliable characteristics for the entire system. This module also takes technical advantage of DBC (Direct Bonded Copper) substrate for the better thermal performance. It is shown that the Si IGBT/SiC diode hybrid IL PFC module can achieve excellent EMI performance and greatly enhance the power handling capability or switching frequency of various applications compared to the Si IGBT/Diode. This paper provides an overall description of the newly developed 650V/50A Hybrid SiC IL PFC IPM product.

  • PDF