• 제목/요약/키워드: Power capacitor

검색결과 1,922건 처리시간 0.028초

A Fully Soft Switched Two Quadrant Bidirectional Soft Switching Converter for Ultra Capacitor Interface Circuits

  • Mirzaei, Amin;Farzanehfard, Hosein;Adib, Ehsan;Jusoh, Awang;Salam, Zainal
    • Journal of Power Electronics
    • /
    • 제11권1호
    • /
    • pp.1-9
    • /
    • 2011
  • This paper describes a two quadrant bidirectional soft switching converter for ultra capacitor interface circuits. The total efficiency of the energy storage system in terms of size and cost can be increased by a combination of batteries and ultra capacitors. The required system energy is provided by a battery, while an ultra capacitor is used at high load power pulses. The ultra capacitor voltage changes during charge and discharge modes, therefore an interface circuit is required between the ultra capacitor and the battery. This interface circuit must have good efficiency while providing bidirectional power conversion to capture energy from regenerative braking, downhill driving and the protecting ultra capacitor from immediate discharge. In this paper a fully soft switched two quadrant bidirectional soft switching converter for ultra capacitor interface circuits is introduced and the elements of the converter are reduced considerably. In this paper, zero voltage transient (ZVT) and zero current transient (ZCT) techniques are applied to increase efficiency. The proposed converter acts as a ZCT Buck to charge the ultra capacitor. On the other hand, it acts as a ZVT Boost to discharge the ultra capacitor. A laboratory prototype converter is designed and realized for hybrid vehicle applications. The experimental results presented confirm the theoretical and simulation results.

DSP를 적용한 전력용 DC 평활 커패시터의 이더넷 원격 고장진단시스템 개발 (A Development of Ethernet-Based Remote Diagnosis System for DC Voltage Smoothing Capacitor using DSP)

  • 손진근
    • 전기학회논문지P
    • /
    • 제60권2호
    • /
    • pp.94-98
    • /
    • 2011
  • Electrolytic power capacitors today form essential components for virtually any power electronic system such as DC/DC converter or UPS. Frequently, electrolytic capacitors for DC link voltage smoothing are the key components which determine the life cycle of the whole unit and often are responsible for converter breakdown failures. In this paper, ethernet-based remote diagnosis system for DC voltage smoothing capacitor using DSP control board is developed. To estimate the status of the capacitor, the equivalent series resistor(ESR) of the component has to be determined. The ESR detection scheme is based on the determination of the capacitor ripple power losses calculated from DC link voltage/current measurement. Experimental results show the veridity and reliability of the proposed ethernet-based remote on-line capacitor diagnosis system.

전력변환장치에서의 DC 출력 필터 커패시터의 온라인 고장 검출기법 (On-line Failure Detection Method of DC Output Filter Capacitor in Power Converters)

  • 손진근
    • 전기학회논문지P
    • /
    • 제58권4호
    • /
    • pp.483-489
    • /
    • 2009
  • Electrolytic capacitors are used in variety of equipments as smoothening element of the power converters because it has high capacitance for its size and low price. Electrolytic capacitors, which is most of the time affected by aging effect, plays a very important role for the power electronics system quality and reliability. Therefore it is important to estimate the parameter of an electrolytic capacitor to predict the failure. This objective of this paper is to propose a new method to detect the rise of equivalent series resistor(ESR) in order to realize the online failure prediction of electrolytic capacitor for DC output filter of power converter. The ESR of electrolytic capacitor estimated from RMS result of filtered waveform(BPF) of the ripple capacitor voltage/current. Therefore, the preposed online failure prediction method has the merits of easy ESR computation and circuit simplicity. Simulation and experimental results are shown to verify the performance of the proposed on-line method.

순간적인 전압강하 및 순간 전압 융기 발생시 전력용 커패시터의 특성 해석 (Characteristics Analysis of Power Capacitor at Sag & Swell)

  • 김종겸;박영진;김일중
    • 조명전기설비학회논문지
    • /
    • 제23권10호
    • /
    • pp.21-28
    • /
    • 2009
  • 전력용 커패시터는 유도성 부하의 갖은 역율을 보상하기 위해 사용되지만, 전력변환장치 등에 의해 발생하는 고조파를 저감하기 위해 리액터와 함께 사용하기도 한다. 전기품질은 대부분이 전압품질에 관련된 것으로서 부하의 안정적인 동작에 매우 중요하지만, 순간적인 전압강하 또는 순간 전압 융기 발생시와 같이 전압의 크기가 일시적으로 변할 경우 커패시터에 전기적인 스트레스로 작용할 수 있다. 본 연구에서는 순간적인 전압강하 및 순간 전압 융기 발생시 커패시터에서의 전압, 전류 및 용량의 변화를 해석하였으며, 커패시터에 리액터를 설치할 경우 순간적인 전압 강하시는 문제가 되지 않지만, 순간 전압 융기 발생 영역에서는 커패시터에 상당한 스트레스를 줄 수 있다는 것을 확인할 수 있었다.

전압 및 전류 고조파에 의한 커패시터 동작 특성 (A Study on the Characteristic of Capacitor by Voltage and Current Harmonics)

  • 김종겸;박영진;이동주;이은웅
    • 전기학회논문지P
    • /
    • 제58권3호
    • /
    • pp.257-262
    • /
    • 2009
  • Capacitor is basically used for the power-factor compensation and sometimes as the passive filter to reduce harmonics of nonlinear load. Since the impedance of capacitor is inversely proportional to the frequency. The harmonic current may result in the problems of voltage distortion and resonance. Capacitor has easily fall under by two harmonic components, a nonlinear load and a distorted utility voltage. The amplified harmonic current and voltage may damage power capacitor. Hence the pre-investigation of harmonic is needed before designing and application the power factor for reducing fault rate. In this paper, we analyzed that voltage and current with harmonics components act on the capacitor under the resonance condition. we concluded that both voltage and current harmonics have an bad effect on the capacitor and current harmonics is a bitter rather than effect by voltage harmonics.

Design and Control Method for Sub-module DC Voltage Ripple of HVDC-MMC

  • Gwon, Jin-Su;Park, Jung-Woo;Kang, Dea-Wook;Kim, Sungshin
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권4호
    • /
    • pp.921-930
    • /
    • 2016
  • This paper proposes a design and control method for a high-voltage direction current modular multilevel converter (HVDC-MMC) considering the capacitor voltage ripple of the submodule (SM). The capacitor voltage ripple consists of the line frequency and double-line-frequency components. The double line- frequency component does not fluctuate according to the active power, whereas the line-frequency component is highly influenced by the grid-side voltage and current. If the grid voltage drops, a conventional converter increases the current to maintain the active power. A grid voltage drops, current increment, or both occur with a capacitor voltage ripple higher than the limit value. In order to reliably control an MMC within a limit value, the SM capacitor should be designed on the basis of the capacitor voltage ripple. In this paper, the capacitor voltage ripple according to the grid voltage and current are analyzed, and the proposed control method includes a current limitation method considering the capacitor voltage ripple. The proposed design and control method are verified through simulation using PSCAD/EMTDC.

유도전동기 효율향상에 따른 역률 보상 콘덴서 최적 선정에 대한 연구 (A Study on the Optimum Selection of the Power Factor Compensation Condenser According to the Improved Efficiency of Induction Motor)

  • 김종겸
    • 전기학회논문지
    • /
    • 제65권7호
    • /
    • pp.1311-1315
    • /
    • 2016
  • Induction motor requires a rotating magnetic field for rotation. Current required to generate the rotating magnetic field is immediately magnetizing current. This magnetizing current is associated with the reactive power. Induction motor is always required reactive power. If reactive power is supplied only to the power supply side, the power factor is low. Therefore, it is to compensate the power factor by connecting capacitors in parallel to the motor terminal. If the capacitor current is greater than the magnetizing current of the motor, there is a possibility that the self-excitation occurs. High voltage generated by the self-excitation leads to insulation failure on the motor. So it is necessary to calculate the power factor correction capacitor capacity the most suitable to the extent that the magnetizing current does not exceed the capacitor current. In this study, we first computed the magnetization current and the reactive power of the induction motor and then calculates a limit of the maximum power factor by comparing the magnetizing current and the capacitor current installed in order to achieve the target power factor.

A Virtual RLC Active Damping Method for LCL-Type Grid-Connected Inverters

  • Geng, Yiwen;Qi, Yawen;Zheng, Pengfei;Guo, Fei;Gao, Xiang
    • Journal of Power Electronics
    • /
    • 제18권5호
    • /
    • pp.1555-1566
    • /
    • 2018
  • Proportional capacitor-current-feedback active damping (AD) is a common damping method for the resonance of LCL-type grid-connected inverters. Proportional capacitor-current-feedback AD behaves as a virtual resistor in parallel with the capacitor. However, the existence of delay in the actual control system causes impedance in the virtual resistor. Impedance is manifested as negative resistance when the resonance frequency exceeds one-sixth of the sampling frequency ($f_s/6$). As a result, the damping effect disappears. To extend the system damping region, this study proposes a virtual resistor-inductor-capacitor (RLC) AD method. The method is implemented by feeding the filter capacitor current passing through a band-pass filter, which functions as a virtual RLC in parallel with the filter capacitor to achieve positive resistance in a wide resonance frequency range. A combination of Nyquist theory and system close-loop pole-zero diagrams is used for damping parameter design to obtain optimal damping parameters. An experiment is performed with a 10 kW grid-connected inverter. The effectiveness of the proposed AD method and the system's robustness against grid impedance variation are demonstrated.

Floating Power Supply Based on Bootstrap Operation for Three-Level Neutral-Point-Clamped Voltage-Source Inverter

  • Nguyen, Qui Tu Vo;Lee, Dong-Choon
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2011년도 추계학술대회
    • /
    • pp.3-4
    • /
    • 2011
  • This paper presents a survey of floating power supply based on bootstrap operation for three-level voltage-source inverters. The floating power supply for upper switches is achieved by the bootstrap capacitor charged during on-time of the switch underneath. Hence, a large number of bulky isolated DC/DC power supplies for each gate driver are reduced. The Pspice simulation results show the behavior of bootstrap devices and the performance of bootstrap capacitor voltage.

  • PDF

유도전동기 역률 보상 파라미터의 적정성 검토 (Suitability Review for Power Correction Parameter of Induction Motor)

  • 김종겸
    • 조명전기설비학회논문지
    • /
    • 제22권12호
    • /
    • pp.101-109
    • /
    • 2008
  • 유도전동기는 회전에 필요한 자계를 유지하기 위해 무효전력을 필요로 한다. 만일 전원측을 대신하여 부하측에서 무효전력이 제공될 경우 역률은 향상될 것이다. 유도전동기의 역률은 대개 낮으므로 커패시터로 보상이 필요하다. 내선규정에서 유도전동기의 역률 보상 커패시터의 용량은 출력에 따라 추천된 값의 설치를 권고하고 있다. 그러나 유도전동기는 같은 출력에서도 회전수에 따라 특성이 달라지므로 역률이 일정하지 않아 용량에 따라 일정한 커패시터의 적용은 부적합하다. 그래서 본 논문에서는 같은 출력조건에서 속도에 따라 기존에 제시된 값과 비교한 결과 역률 보상 커패시터의 용량이 약간 높게 설정되어야 함을 확인하였다.