• Title/Summary/Keyword: Power IT

Search Result 31,297, Processing Time 0.054 seconds

A Study on Power Balance Control for Hybrid Power System with Common DC Link (공통 DC단을 갖는 복합발전시스템을 위한 전력균형제어에 관한 연구)

  • Jeong B. H.;Cho J. S.;Gho J. S.;Choe G. H.;Kim E. S.;Lee C. S.
    • Proceedings of the KIPE Conference
    • /
    • 2002.11a
    • /
    • pp.181-185
    • /
    • 2002
  • This paper discusses power balance control of photovoltaic/wind/diesel hybrid generation system for remote area power supplies. There are many control methods for hybrid power system. Among others, it must be adopted that the control method to guarantee a stable balance between supply and demand, regardless of the fluctuation of generator power by atmospheric changes. In this paper, it Is proposed that a hybrid generation system has a power-balanced controller to equilibrate generation power with a load demand, which is composed of DC bus-type power systems. To execute power balance control, it is assumed that all of power generators have a equivalent current-source characteristics. Through the results of simulation, the proposed scheme was verified.

  • PDF

A Security Design for a Smart Power Grid Field Test based-on Power IT Systems (전력 IT 기반스마트 파워그리드 실증 보안 체계 설계)

  • Lee, Myung-Hoon;Bae, Si-Hwa;Son, Sung-Yong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.11
    • /
    • pp.2497-2506
    • /
    • 2010
  • Smart power grid is targeting to improve grid operation by integrating existing power IT technologies in the jeju smart grid field test. Real-time two-way communication and interoperability in power grid are essential to smart power grid. Adopting smart grid will increase security vulnerabilities in power grid by increasing the number of wireless sensors and the chances of the external exposure of communication networks. In addition, hackers can cause chaos in the power grid system with eavesdropping and forgery attacks in communication networks. Smart power grid is one of the most important systems in deploying smart grid, and it is important to design security system systematically since smart grid can be seriously damaged when problem occurs. In this paper, local and global smart grid security standard and security vulnerabilities in power grid are reviewed, and 2 level smart grid service model is proposed.

A Study on the Optimization of a Contracted Power Prediction Model for Convenience Store using XGBoost Regression (XGBoost 회귀를 활용한 편의점 계약전력 예측 모델의 최적화에 대한 연구)

  • Kim, Sang Min;Park, Chankwon;Lee, Ji-Eun
    • Journal of Information Technology Services
    • /
    • v.21 no.4
    • /
    • pp.91-103
    • /
    • 2022
  • This study proposes a model for predicting contracted power using electric power data collected in real time from convenience stores nationwide. By optimizing the prediction model using machine learning, it will be possible to predict the contracted power required to renew the contract of the existing convenience store. Contracted power is predicted through the XGBoost regression model. For the learning of XGBoost model, the electric power data collected for 16 months through a real-time monitoring system for convenience stores nationwide were used. The hyperparameters of the XGBoost model were tuned using the GridesearchCV, and the main features of the prediction model were identified using the xgb.importance function. In addition, it was also confirmed whether the preprocessing method of missing values and outliers affects the prediction of reduced power. As a result of hyperparameter tuning, an optimal model with improved predictive performance was obtained. It was found that the features of power.2020.09, power.2021.02, area, and operating time had an effect on the prediction of contracted power. As a result of the analysis, it was found that the preprocessing policy of missing values and outliers did not affect the prediction result. The proposed XGBoost regression model showed high predictive performance for contract power. Even if the preprocessing method for missing values and outliers was changed, there was no significant difference in the prediction results through hyperparameters tuning.

Pseudo-BIPV Style Rooftop-Solar-Plant Implementation for Small Warehouse Case

  • Cha, Jaesang;Cho, Ju Phil
    • International journal of advanced smart convergence
    • /
    • v.11 no.3
    • /
    • pp.187-196
    • /
    • 2022
  • In this paper, we propose an example of designing and constructing a roof-type solar power plant structure equipped with a Pseudo-BIPV (Building-Integrated Photovoltaic) shape suitable for use as a roof of a small warehouse with a sandwich-type panel structure. As the characteristics of the roof-type solar power generation facility to be installed in the small warehouse proposed in this study, the shape of the roof is not a general A type, but a right-angled triangle shape with the slope is designed to face south. We chose a structure in which an inverter for one power plant and a control facility are linked by grouping several roofs of buildings. In addition, the height of the roof structure is less than 20 cm from the floor, and it has a shape similar to that of the BIPV, so it is building-friendly because it is almost in close contact with the roof. At the same time, the roof creates a reflective light source due to the white color. By linking this roof with a double-sided solar panel, we designed it to obtain both the advantage of the roof-friendliness and the advantage of efficiency improvement for the electric power generation based on the double-sided panel. Compared to the existing solar power generation facilities using A-shaped cross-sectional modules, the power generation efficiency of roofs in this case is increased by more than 11%, which we can confirm, through the comparison analysis of monitoring data between power plants in the same area. Therefore, if the roof-type solar structure suitable for the small warehouse we have presented in this paper is used, the facilities of electric power generation is eco-friendly. Further it is easier to obtain facility certification compared to the BIPV, and improved capacity of the power generation can be secured at low material cost. It is believed that the roof-type solar power generation facility we proposed can be usefully used for warehouse or factory-based smart housing. Sensor devices for monitoring, CCTV monitoring, or safety and environment management, operating in connection with the solar power generation facilities, are linked with the Internet of Things (IoT) solution, so they can be monitored and controlled remotely.

Development of 60KV Pulsed Power Supply using IGBT Stacks (IGBT 직렬구동에 의한 60KV 펄스 전원장치 개발)

  • Ryoo, Hong-Je;Kim, Jong-Soo;Rim, Geun-Hie;Goussev, G.I.;Sytykh, D.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.1
    • /
    • pp.88-99
    • /
    • 2007
  • In this paper, a novel new pulse power generator based on IGBT stacks is proposed for pulse power application. Because it can generate up to 60kV pulse output voltage without any step- up transformer or pulse forming network, it has advantages of fast rising time, easiness of pulse width variation and rectangular pulse shape. Proposed scheme consists of series connected 9 power stages to generate maximum 60kV output pulse and one series resonant power inverter to charge DC capacitor voltage. Each power stages are configured as 8 series connected power cells and each power cell generates up to 850VDC pulse. Finally pulse output voltage is applied using total 72 series connected IGBTs. To reduce component for gate power supply, a simple and robust gate drive circuit is proposed. For gating signal synchronization, full bridge invertor and pulse transformer generates on-off signals of IGBT gating with gate power simultaneously and it has very good characteristics of short circuit protection.

Transition of voltage-differential current under internal fault on power transformer (전력용 변압기 내부고장시 전압-차전류의 변화에 관한 연구)

  • Park, Jae-Sae
    • Proceedings of the KIEE Conference
    • /
    • 2004.07e
    • /
    • pp.92-95
    • /
    • 2004
  • Power transformer is an important apparatus in transforming and delivering the power in a power system. It shows less accident ratio than other system apparatus, but once the accident occurs, it causes long-term operation stoppage and economic loss. It brings high bad spillover effects. Therefore, the role of protective relaying, which is to prevent internal fault a power transformer is highly important. This study proposed advanced algorithm that can clearly determine internal fault of the power transformer and magnetizing inrush, through numerical analysis by using the terminal voltage and input output current.

  • PDF

A Study On Controlling An illuminator Using Power-Line Modem (전력선 모뎀을 이용한 조명기기 제어연구)

  • 최현철;김희식;김웅찬;이재황
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.129-129
    • /
    • 2000
  • This paper describes the concept and method of Controlling an illuminator using Power-Line Modem. Nowadays it is being studied and developed the Power-Line communication. The communication using Power-Line can realize Building-Automation and Home-Automation easily and chiefly. Because it has no need constructing an additional equipment. In this study it is used The Power-Line Modem, illuminators and microcontrollers which enable RS-232C serial communication.

  • PDF

A Study on the Cost Hierarchical System of Nuclaer Power Plant Construction Project for Introcusting Earned Vaule Management System (성과관리시스템(EVMS) 도입을 위한 원전 건설사업비 관리체계 세분화 방안에 관한 연구)

  • Lee, Sang-Hyun;Kim, Woo-Joong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.230-231
    • /
    • 2019
  • The nuclear power plant construction project is large-scale, has various stakeholders and computer system, and is produced and managed a large amount of information. The domestic nuclear power plant construction project has accumulated data based on many years of experience in the system. It has the competitiveness to suggeest alternatives that meet the requirement of the client in the overseas nuclear power plant project. Earned value management, which integrates schedule and cost, is possible to risk management. It was developed the earned value management system considering the the actual data properties and types of the preceding nuclear power plant construction projects. It will be able to increase the nuclaer power plant export competieiveness. Therefore, it was palned to carry out future stuies so that it be able to complement the measure to integrate cost and schedule in consideration of actual data(quantity of activity, etc.).

  • PDF

Measurement of the Moderator Temperature Coefficient of Reactivity for Pressurized Water Reactors

  • Yu, Sung-Sik;Kim, Se-Chang;Na, Young-Whan;Kim, H. S.;J. Y. Doo;Kim, D. K.;S. W. Long
    • Nuclear Engineering and Technology
    • /
    • v.29 no.6
    • /
    • pp.488-499
    • /
    • 1997
  • The measurements of the moderator temperature coefficient (MTC) are performed to demonstrate that the calculational model produces results that are consistent with the measurements. Since negative MTC is also a technical specification value that may limit the cycle length, it is important to measure it as accurately as possible. In this report, preferred choice of test method depending on the time in cycle, best power indication and temperature definition in MTC calculation were determined based on the MTC test results taken during initial startup testing and at 2/3 cycle burnup in the Yonggwang nuclear power plant. The results show that the ratio and rodded methods provided good agreement with the predictions during initial startup testing. However, near end-of-cycle the depletion method gives better results, and so is suggested to be used in the MTC measurements at 2/3 cycle burnup. The use of primary Delta T power as a power indicator in the MTC calculations is highly advisable since it responds with good consistent results very quickly to changes unlike secondary calorimetric power. For the appropriate temperature definitions used in the MTC calculations, it is considered that the arithmetic average temperature measured simply by inlet and outlet thermocouples is preferred. Although volumetric average temperature provides better results, the improvement is not sufficient to compensate for the simplicity of calculations by arithmetic average temperature.

  • PDF

A Study on Effective Enhancement of Load Power Factor Using the Load Power Factor Sensitivity of Generation Cost

  • Lee Byung Ha;Kim Jung-Hoon
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.3
    • /
    • pp.252-259
    • /
    • 2005
  • Various problems such as increase of power loss and voltage instability may often occur in the case of low load power factor. The demand of reactive power increases continuously with the growth of active power and restructuring of electric power companies makes the comprehensive management of reactive power a troublesome problem, so that the systematic control of load power factor is required. In this paper, the load power factor sensitivity of generation cost is derived and it is used for effectively determining the locations of reactive power compensation devices and for enhancing the load power factor appropriately. In addition, voltage variation penalty cost is introduced and integrated costs including voltage variation penalty cost are used for determining the value of load power factor from the point of view of economic investment and voltage regulation. It is shown through application to a large-scale power system that the load power factor can be enhanced effectively using the load power factor sensitivity and the integrated cost.