• Title/Summary/Keyword: Power IC

Search Result 820, Processing Time 0.031 seconds

Design of Power Factor Correction IC for 1.5kW System Power Module (1.5kW급 System Power Module용 Power Factor Correction IC 설계)

  • Kim, Hyoung-Woo;Seo, Kil-Soo;Kim, Ki-Hyun;Park, Hyun-Il;Kim, Nam-Kyun
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.499-500
    • /
    • 2008
  • In this paper, we design and implement the monolithic power factor correction IC for system power modules using a high voltage(50V) CMOS process. The power factor correction IC is designed for power applications, such as refrigerator, air-conditioner, etc. It includes low voltage logic, 5V regulator, analog control circuit, high-voltage high current output drivers, and several protection circuits. And also, the designed IC has standby detection function which detects the output power of the converter stage and generates system down signal when load device is under the standby condition. The simulation and experimental results show that the designed IC acts properly as power factor correction IC with efficient protective functions.

  • PDF

Highly integrated LCD bias and control IC

  • Nachbaur, Oliver
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1236-1239
    • /
    • 2009
  • Each LCD TFT panel requires a power supply IC on the panel board. The IC provides the power rails for the timing controller, source and gated driver IC and others. The industry trend moves towards higher integrated devices. The challenge for the panel manufacturer is the development and implementation of such an IC in cooperation with the semiconductor supplier. If not done carefully the solution will not reduce the overall solution cost or can't provide the expected performance and reliability. This paper discusses the key considerations to successfully develop and integrate a highly integrated LCD bias IC into the system.

  • PDF

Design of Zero Cross Detection Power Factor Correction IC (Zero Cross Detection Power Factor Correction IC 설계)

  • Seo, Kil-Soo;Kim, Hyoung-Woo;Kim, Ki-Hyun;Park, Hyeon-Il;Kim, Nam-Kyun;Park, Ju-Sung
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.519-520
    • /
    • 2008
  • In this paper, we design and implement the monolithic zero crossing detection power factor correction IC using a high voltage 30V BCD process. The ZCD PFC IC is designed for power applications, such as notebook, LCD monitor, etc. It includes power factor correction function and several protection circuit, regulator, high-voltage high current output drivers. And also, the designed IC has restart timer function which the output pulse is generated if the output signal of IC is not in a 200us. The simulation results show that the designed IC acts properly as power factor correction IC with efficient protective functions.

  • PDF

Design of PWM IC with Standby Mode Control Function for SMPS (대기모드 기능을 내장한 전원 장치 제어용 PWM IC 설계)

  • Park, Hyun-Il;Kim, Hyoung-Woo;Kim, Ki-Hyun;Seo, Kil-Soo;Han, Seok-Bung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.4
    • /
    • pp.289-295
    • /
    • 2008
  • In this paper, we designed the off-line PWM(Pulse width modulation) control IC for flyback type power converter to reduce the standby power consumption. In normal state, this off-line PWM IC generates the output pulse with $40\sim60kHz$ frequency and duty ratio of $20\sim88%$. When SMPS operates in standby mode, this IC generates the output pulse with 33kHz frequency and duty ratio of 1 %. SPICE simulation was performed to verify the standby power consumption of the power converter with designed of-line PWM IC. Power converter with designed off-line PWM IC consumes less than 0.3W when it operates in standby mode condition.

Overview of 3-D IC Design Technologies for Signal Integrity (SI) and Power Integrity (PI) of a TSV-Based 3D IC

  • Kim, Joohee;Kim, Joungho
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.2
    • /
    • pp.3-14
    • /
    • 2013
  • In this paper, key design issues and considerations for Signal Integrity(SI) and Power Integrity(PI) of a TSV-based 3D IC are introduced. For the signal integrity and power integrity of a TSV-based 3-D IC channel, analytical modeling and analysis results of a TSV-based 3-D channel and power delivery network (PDN) are presented. In addition, various design techniques and solutions which are to improve the electrical performance of a 3-D IC are investigated.

A Study on the Design of Green Mode Power Switch IC (그린 모드 파워 스위치 IC 설계에 관한 연구)

  • Lee, Woo-Ram;Son, Sang-Hee;Chung, Won-Sup
    • Journal of IKEEE
    • /
    • v.14 no.2
    • /
    • pp.1-8
    • /
    • 2010
  • In this paper, Green Mode Power IC is designed to reduce the standby power. The proposed and designed IC works for the Switch Mode Power Supply(SMPS) and has the function of PWM. To reduce the unnecessary electric power, burst mode and skip mode section are introduced and controlled by external power MOSFET to diminish the standby power. The proposed IC is designed and simulated by KEC 30V-High Voltage 0.5um CMOS Process. The structure of proposed IC is composed of voltage regulator circuit, voltage reference circuit, UVLO(Under Voltage Lock out) circuit, Ibias circuit, green circuit, PWM circuit, OSC circuit, protection circuit, control circuit, and level & driver circuit. Measuring the current consumption of each block from the simulation results, 1.2942 mA of the summing consumption current from each block is calculated and ot proved that it is within the our design target of 1.3 mA. The current consumption of the proposed IC in this paper is less than a half of conventional ICs, and power consumption is reduced to the extent of 1W in standby mode. From the above results, we know that efficiency of proposed IC is superior to the previous IC.

Digital Power IC design using VHDL and FPGA (VHDL과 FPGA를 이용한 Digital Power IC 설계)

  • Kim, Min Ho;Koo, Bon Ha;Yang, Oh
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.4
    • /
    • pp.27-32
    • /
    • 2013
  • In this paper, the boost converter was implemented by digital control in many applications of the step-up. The PWM(pulse width modulation) control module of boost converter was digitized at power converter using the FPGA device and VHDL. The boost converter was designed to output a fixed voltage through the PI control algorithm of the PWM control module even if input voltage and output load are variable. The boost converter was digitized can be simplified by reducing the size of the module and the external control components. Thus, the digital power IC has advantageous for weight reduction and miniaturization of electronic products because it can be controlled remotely by setting the desired output voltage and PWM control module. The boost converter using the digital power IC was confirmed through experiments and the good performances were showed from experiment results.

Power Factor Correction IC design for Power Supply (전원장치용 Power Factor Correction IC 설계)

  • Kim, Hyoung-Woo;Kim, Sang-Cheol;Seo, Kil-Soo;Kim, Ki-Hyun;Kim, Nam-Kyun;Kim, Eun-Dong
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.1954-1956
    • /
    • 2005
  • 본 논문에서는 SMPS(Switch-Mode Power Supply)의 역률을 개선할 수 있는 power factor correction(PFC) IC를 설계하였다. 설계된 PFC IC에는 전원장치의 power MOSFET을 구동할 수 있는 기능 이외에도 과전압, 과전류 및 단락보호 기능이 포함되어 있다. 또한 시스템이 대기상태에 있는 경우, 전압 및 전류 feedback 제어에 의해 효과적으로 대기전력을 절감할 수 있도록 설계하였다. 설계된 PFC IC는 시스템이 대기상태에서 일정시간동안 부하변동이 없을 경우 이를 감지하여 자동으로 시스템을 off 시켜 대기전력 소모를 최소화 하는 기능을 포함하고 있다.

  • PDF

Breakdown and Destruction Characteristics of the CMOS IC by High Power Microwave (고출력 과도 전자파에 의한 CMOS IC의 오동작 및 파괴 특성)

  • Hong, Joo-Il;Hwang, Sun-Mook;Huh, Chang-Su
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.7
    • /
    • pp.1282-1287
    • /
    • 2007
  • We investigated the damage of the CMOS IC which manufactured three different technologies by high power microwave. The tests separated the two methods in accordance with the types of the CMOS IC located inner waveguide. The only CMOS IC which was located inner waveguide was occurred breakdown below the max electric field (23.94kV/m) without destruction but the CMOS IC which was connected IC to line organically was located inner waveguide and it was occurred breakdown and destruction below the max electric field. Also destructed CMOS IC was removed their surface and a chip condition was analyzed by SEM. The SEM analysis of the damaged devices showed onchuipwire and bondwire destruction like melting due to thermal effect. The tested results are applied to the fundamental data which interprets the combination mechanism of the semiconductors from artificial electromagnetic wave environment and are applied to the data which understand electromagnetic wave effects of electronic equipments.

Automotive High Side Switch Driver IC for Current Sensing Accuracy Improvement with Reverse Battery Protection

  • Park, Jaehyun;Park, Shihong
    • Journal of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.1372-1381
    • /
    • 2017
  • This paper presents a high-side switch driver IC capable of improving the current sensing accuracy and providing reverse battery protection. Power semiconductor switches used to replace relay switches are encumbered by two disadvantages: they are prone to current sensing errors and they require additional external protection circuits for reverse battery protection. The proposed IC integrates a gate driver and current sensing blocks, thus compensating for these two disadvantages with a single IC. A p-sub-based 90-V $0.13-{\mu}m$ bipolar-CMOS-DMOS (BCD) process is used for the design and fabrication of the proposed IC. The current sensing accuracy (error ${\leq}{\pm}5%$ in the range of 0.1 A-6.5 A) and the reverse battery protection features of the proposed IC were experimentally tested and verified.