• Title/Summary/Keyword: Power Device

Search Result 5,035, Processing Time 0.03 seconds

An Algorithm for Transfer Capability Evaluation in Power Systems with FACTS Device (FACTS적용계통에서의 송전용량 평가 알고리즘)

  • Yoon, Yong-Beum;Yoon, Jong-Su;Choo, Jin-Boo
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.880-883
    • /
    • 1998
  • In this paper, sensitivity based approach to estimate BITC(bilateral interchange transfer capacity) considering the real power flow control function of FACTS device is presented. The real power flow setting of the FACTS device is adjusted so that it transfer the power flow from the first violation point of transmission capacity to other transmission lines in the power system, thus allowing more power to be transferred from the specified generator bus to the specified load bus. The transfer between the two bus locations is increased from this new operating condition until a violation of transmission capacity limits occurs or until the setting of the FACTS device can no longer be adjusted. The proposed algorithm is illustrated using examples of small and real life power system.

  • PDF

Suppression of Leakage Current and Distortion in Variable Capacitance Devices and their Application to AC Power Regulators

  • Katsuki, Akihiko;Oki, Takuya
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.66-73
    • /
    • 2016
  • The quantity of alternating current (AC) leakage and the value of distortion factor in capacitor currents are discussed with regard to a new power component called variable capacitance device (VCD). This component has terminals for controlling its capacitance. Nonlinear dielectric characteristics are utilized in this device to vary the capacitance. When VCD operates in an AC circuit, the AC leakage from this device through direct current (DC) control voltage source increases according to the conditions of DC control voltage and so on. To solve this problem, we propose techniques for suppressing AC leakage. Although VCD has strong nonlinear characteristics, the current through the capacitor is not distorted significantly. The relations between AC leakage and the distortion in current waveforms are investigated. An application example for an AC power regulator is also introduced to evaluate the distortion in waveforms.

Technical Trends in Vertical GaN Power Devices for Electric Vehicle Application (전기차 응용을 위한 수직형 GaN 전력반도체 기술 동향)

  • H.S. Lee;S.B. Bae
    • Electronics and Telecommunications Trends
    • /
    • v.38 no.1
    • /
    • pp.36-45
    • /
    • 2023
  • The increasing demand for ultra-high efficiency of compact power conversion systems for electric vehicle applications has brought GaN power semiconductors to the fore due to their low conduction losses and fast switching speed. In particular, the development of materials and core device processes contributed to remarkable results regarding the publication of vertical GaN power devices with high breakdown voltage. This paper reviews recent advances on GaN material technology and vertical GaN power device technology. The GaN material technology covers the latest technological trends and GaN epitaxial growth technology, while the vertical GaN power device technology examines diodes, Trench FETs, JFETs, and FinFETs and reviews the vertical GaN PiN diode technology developed by ETRI.

The Resonant class Φ2 Inverter for short range magnetic resonant wireless power transfer system (근거리 무선전력 전송용 2MHz 공진형 class Φ2 인버터)

  • YANG, Haeyoul;KIM, Changsun
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.447-448
    • /
    • 2012
  • With wireless power transfer the of ECR device the designed with a high-frequency and high frequency AC power to the device that may enter the high-frequency switching inverter to be possible. In this paper, is designed to 2MHz switching frequency by using ECR device capable of 2MHz Class ${\Phi}_2$ inverter was designed as a wireless power transmission.

  • PDF

Device Suitability Analysis by Comparing Performance of SiC MOSFET and GaN Transistor in Induction Heating System (유도 가열 시스템에서 SiC MOSFET과 GaN Transistor의 성능 비교를 통한 소자 적합성 분석)

  • Cha, Kwang-Hyung;Ju, Chang-Tae;Min, Sung-Soo;Kim, Rae-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.3
    • /
    • pp.204-212
    • /
    • 2020
  • In this study, device suitability analysis is performed by comparing the performance of SiC MOSFET and GaN Transistor, which are WBG power semiconductor devices in the induction heating (IH) system. WBG devices have the advantages of low conduction resistance, switching losses, and fast switching due to their excellent physical properties, which can achieve high output power and efficiency in IH systems. In this study, SiC and GaN are applied to a general half-bridge series resonant converter topology to compare the conduction loss, switching loss, reverse conduction loss, and thermal performance of the device in consideration of device characteristics and circuit conditions. On this basis, device suitability in the IH system is analyzed. A half-bridge series resonant converter prototype using the SiC and GaN of a 650-V rating is constructed to verify device suitability through performance comparison and verified through an experimental comparison of power loss and thermal performance.

Influence of Device Parameters Spread on Current Distribution of Paralleled Silicon Carbide MOSFETs

  • Ke, Junji;Zhao, Zhibin;Sun, Peng;Huang, Huazhen;Abuogo, James;Cui, Xiang
    • Journal of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.1054-1067
    • /
    • 2019
  • This paper systematically investigates the influence of device parameters spread on the current distribution of paralleled silicon carbide (SiC) MOSFETs. First, a variation coefficient is introduced and used as the evaluating norm for the parameters spread. Then a sample of 30 SiC MOSFET devices from the same batch of a well-known company is selected and tested under the same conditions as those on datasheet. It is found that there is big difference among parameters spread. Furthermore, comprehensive theoretical and simulation analyses are carried out to study the sensitivity of the current imbalance to variations of the device parameters. Based on the concept of the control variable method, the influence of each device parameter on the steady-state and transient current distributions of paralleled SiC MOSFETs are verified separately by experiments. Finally, some screening suggestions of devices or chips before parallel-connection are provided in terms of different applications and different driver configurations.

The Improvement in the Forward Blocking Characteristics of Lateral Trench Electrode Power MOSFET by using Local Doping (로컬 도핑을 이용한 수평형 트렌치 전극 파워 MOSFET의 순방향 블로킹특성 개선)

  • Kim, Dae-Jong;Kim, Dae-Won;Sung, Man-Young;Rhie, Dong-Hee;Kang, Ey-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.19-22
    • /
    • 2003
  • In this paper, a new small size Lateral Trench Electrode Power MOSFET with local doping is proposed. This new structure is based on the conventional lateral power MOSFET. The entire electrodes of proposed device are placed in trench oxide. The forward blocking voltage of the proposed device is improved by 3.3 times with that of the conventional lateral power MOSFET. The forward blocking voltage of proposed device is about 500V. At the same size, a increase of the forward blocking voltage of about 3.3 times relative to the conventional lateral power MOSFET is observed by using TMA-MEDICI which is used for analyzing device characteristics. Because the electrodes of the proposed device are formed in trench oxide respectively, the electric field in the device are crowded to trench oxide. And because of the structure which has a narrow drain doping width, the punch through breakdown can be occurred in higher voltage than that of conventional lateral power MOSFET. We observed that the characteristics of the proposed device was improved by using TMA-MEDICI and that the fabrication of the proposed device is possible by using TMA-TSUPREM4.

  • PDF

An Development of Landscape Lighting Power Control System with Solar Cell Generator Equipment for Energy Saving (에너지절감을 위한 태양광발전설비 연계형 경관조명 전력제어시스템의 개발)

  • Kim, Dong-Wan;Park, Sung-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.4
    • /
    • pp.364-371
    • /
    • 2010
  • In this paper, we propose the landscape lighting power control system with solar sell generator equipment for energy saving, and also which is included the landscape lighting power transformation device. The power transformation device can check inverse current in the power of the solar cell module and control the power of the battery. And we present the design of landscape lighting power control system. The power control system uses microprocessor with charging system and power transformation device. And also it can control the power of loads under consideration intensity of illumination. The landscape lighting loads are composed of LED(Lighting Emitting Diode) and HID(High Intensity Discharge)lamps. To evaluate property, we installed the solar cell array which generate three kilo watt power. Experimental results show that the proposed system can have stability and energy saving on the mixed configuration of electric loads with DC and AC lamps.

ECR device impedance matching circuit design (ECR장치의 임피던스 매칭회로 설계)

  • KIM, Sung-Wan;KIM, Chang-Sun
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.445-446
    • /
    • 2012
  • Recently the interest in wireless power transfer have been studied. ECR (Electromagnetic Coupled Resonance) device, depending on the size of the frequency characteristics of the structure, increasing in volume and larger volume of wireless power transmission device to make use of ECR is a big barrier. So to solve this problem for ECR device miniaturization and high efficiency has been actively studied. In this paper, the size of the device for ECR IM (Impedance Matching) by applying a one-turn coil circuit, remove the device in the form of ECR Network Analyzer measured by removing the one-turn coil has demonstrated the possibility of the device in the form of ECR.

  • PDF

The Process and Fabrication of 500 V Unified Trench Gate Power MOSFET (500 V급 Unified Trench Gate Power MOSFET 공정 및 제작에 관한 연구)

  • Kang, Ey-Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.10
    • /
    • pp.720-725
    • /
    • 2013
  • Power MOSFET operate voltage-driven devices, design to control the large power switching device for power supply, converter, motor control, etc. We have analyzed trench process, field limit ring process for fabrication of unified trench gate power MOSFET. And we have analyzed electrical characteristics of fabricated unified trench gate power MOSFET. The optimal trench process was based on SF6. After we carried out SEM measurement, we obtained superior trench gate and field limit ring process. And we compared electrical characteristics of planar and trench gate unified power MOSFET after completing device fabrication. As a result, the both of them was obtained 500 V breakdown voltage. However trench gate unified power MOSFET was shown improved Vth and on state voltage drop characteristics than planar gate unified power MOSFET.