• Title/Summary/Keyword: Power Conversion System

Search Result 1,262, Processing Time 0.051 seconds

The Auxiliary Power Compensation Unit for Stand-Alone Photovoltaic/Wind Hybrid Generation System (독립형 소형 태양광/풍력 복합발전시스템의 출력안정화를 위한 보조 전력보상장치개발에 관한 연구)

  • Park, Se-Jun;Yoon, Jeong-Phil;Kang, Byung-Bog;Yoon, Hyung-Sang;Cha, In-Su;Lim, Jung-Yeol
    • Journal of the Korean Solar Energy Society
    • /
    • v.24 no.3
    • /
    • pp.47-54
    • /
    • 2004
  • Photovoltaic energy and wind energy are highly dependent on the season, time and extremely intermittent energy sources. Because of these reasons, in view of the reliability the photovoltaic and the wind power generation system have many problems(energy conversion, energy storage, load control etc.) comparing with conventional power plant. In order to solve these existing problems, hybrid generation system composed of photovoltaic(500W) and wind power system(400W) was suggested. But, hybrid generation system cannot always generate stable output due to the varying weather condition. So, the auxiliary power compensation unit that uses elastic energy of spiral spring was added to hybrid generation system for the present study. It was partly confirmed that hybrid generation system was generated a stable outputs by spiral spring was continuously provided to load.

A Development of Efficient Power Conversion Technology for Reduction of Power Equipment (전원설비 저감을 위한 고효율 전력변환기술 개발)

  • Koo, Myoung-Wan;Lee, Woo-Won;Lim, Kye-Young
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.142-144
    • /
    • 2008
  • The Former High Efficiency Inverter(the power restoration process) system process has advantage which is the energy reduction rather than the Former Inverter(the resistence damping process), However, under repair and remodeling, the power facilities capacity is not easy to increase that the former High Efficiency Inverter needs to increase the Power Facilities Capacity of 20~30% than the Inverter(the resistence damping process) so Therefore we are going to suggest the system which is not going to make an increase the power facilities capacity and is applicable the High Efficiency Inverter.

  • PDF

Maximum Output Power Control of Wind Generation System Using Fuzzy Control (퍼지제어를 이용한 풍력발전 시스템의 최대출력 제어)

  • Abo-Khalil, Ahmed. G.;Kim, Young-Sin;Lee, Dong-Choon
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.10
    • /
    • pp.497-504
    • /
    • 2005
  • For maximum output power, wind turbines are usually controlled at the speed which is determined by the optimal tip-speed ratio. This method requires information of wind speed and the power conversion coefficient which is varied by the pitch angle control. In this paper, a new maximum output power control algorithm using fuzzy logic control is proposed, which doesn't need this information. Instead, fuzzy controllers use information of the generator speed and the output power. By fuzzy rules, the fuzzy controller produces a new generator reference speed which gives the maximum output power of the generator for variable wind speeds. The proposed algorithm has been implemented for the 3[kW] cage-type induction generator system at laboratory, of which results verified the effectiveness of the algorithm.

Photovoltaic Power Generation Control by A Partial Resonant Buck-Boost chopper circuit (부분공진 승강압 초퍼회로에 의한 태양광발전제어)

  • Byun, H.G.;Moon, S.P.;Suh, K.Y.;Lee, H.W.
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.413-415
    • /
    • 1997
  • The solar cell has an optimum operating point to be able to get maximum power. To obtain maximum power from Photovoltaic array, potovolt aic power syste usually requres maximum power point tracking controller. The output characteristics of solar cell are nonlinear, and these characteristics vary with load solar insolation, solar cell temperature. Therefore the tracking control of maximum power point is the complicated problem. This paper presents power characteristics of residential Photovoltaic system applying a quck-boost conversion system.

  • PDF

The Performance Analysis of Multi Stage Reheater Organic Rankine Cycle According to Heat Sink Temperature Change (냉열원 온도 변화에 따른 다단재열랭킨사이클의 성능해석)

  • Lee, Ho-Saeng;Lim, Seung-Taek;Kim, Hyeon-Ju
    • Journal of Power System Engineering
    • /
    • v.20 no.1
    • /
    • pp.11-17
    • /
    • 2016
  • In this study, the simulation for performance comparison between basic single stage organic rankine cycle, multi stage reheater cycle and multi stage reheater & recuperator cycle was carried out. The multi stage reheater cycle and multi stage reheater & recuperator cycle was designed to improve the efficiency for organic rankine cycle using heat source from industrial waste heat and heat sink from deep ocean water. R245fa was selected as a refrigerant for the cycle and system efficiencies were simulated by the variation of the heat sink temperature and the cycle classification. Performance characteristics were simulated by using the Aspen HYSYS. It was confirmed that the system efficiency was decreased by the increase of heat sink temperature. These results can be considered to be applied as geo-ocean thermal energy conversion in where plenty of geothermal or ocean thermal resource exist.

Photovoltaic System using Two-Phase Chopper System with Two Seperate Groups (2분할 2상 쵸퍼에 의한 태양광발전 시스템)

  • Kim, Yun-Kyung;Sung, Nark-Kuy;Lee, Seung-Hwan;Kang, Seung-Uk;Kim, Yeong-Ju;Han, Kyung-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.2175-2177
    • /
    • 1998
  • Sunlight makes it possible to adjust scale of electric power easily as a electric energy without air pollution. Solar cell to convert the sunlight to the electric energy has DC output which is influenced on temperature and irradiation time. Conversion of DC output from the solar cell to AC is necessary due to the fact that most loads to be used currently are compatible with AC generally. In the present work, Two-phase chopper system with two seperate groups to obtain two identical DC is used to preserve the energy from the solar cell in two battery. They are controlled to be operated around maximum output of the solar cell under the condition of constant voltage. Photovoltaic system with DC${\rightarrow}$AC conversion is also investigated for big capacity and two seperated electric power using two separate inverter.

  • PDF

Implementation of Grid-interactive Current Controlled Voltage Source Inverter for Power Conditioning Systems

  • Ko Sung-Hun;Shin Young-Chan;Lee Seong-Ryong
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.4
    • /
    • pp.382-391
    • /
    • 2005
  • Increasing of the nonlinear type power electronics equipment, power conditioning systems (PCS) have been researched and developed for many years in order to compensate for harmonic disturbances and reactive power. PCS's not only improve harmonic current and power factor in the ac grid line but also achieves energy saving used by the renewable energy source (RES). In this paper, the implementation of a current controlled voltage source inverter (CCVSI) using RES for PCS is presented. The basic principle and control algorithm is theoretically analyzed and the design methodology of the system is discussed. The proposed system could achieve power quality control (PQC) to reduce harmonic current and improve power factor, and demand side management (DSM) to supply active power simultaneously, which are both operated by the polarized ramp time (PRT) current control algorithm and the grid-interactive current control algorithm. A 1KVA test model of the CCVSI has been built using IGBT controlled by a digital signal processor (DSP). To verify the proposed system, a comprehensive evaluation with theoretical analysis, simulation and experimental results is presented.

Study on Characteristic of Methane Reforming and Production of Hydrogen using GlidArc Plasma (GlidArc 플라즈마를 이용한 메탄의 개질 특성 및 수소 생산에 관한 연구)

  • Kim, Seong-Cheon;Chun, Young-Nam
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.11
    • /
    • pp.942-948
    • /
    • 2007
  • Popular techniques for producing hydrogen by converting methane include steam reforming and catalyst reforming. However, these are high temperature and high pressure processes limited by equipment, cost and difficulty of operation. Low temperature plasma is projected to be a technique that can be used to produce high concentration hydrogen from methane. It is suitable for miniaturization and fur application in other technologies. In this research, the effect of changing each of the following variables was studied using an AC GlidArc system that was conceived by the research team: the gas components ratio, the gas flow rate, the catalyst reactor temperature and voltage. Results were obtained for methane and hydrogen yields and intermediate products. The system used in this research consisted of 3 electrodes and an AC power source. In this study, air was added fur the partial oxidation reaction of methane. The result showed that as the gas flow rate, the catalyst reactor temperature and the electric power increased, the methane conversion rate and the hydrogen concentration also increased. With $O_2/C$ ratio of 0.45, input flow rate of 4.9 l/min and power supply of 1 kW as the reference condition, the methane conversion rate, the high hydrogen selectivity and the reformer energy density were 69.2%, 32.6% and 35.2% respectively.

The Development of Main Power Conversion System for MAGLEV (도시형 자기부상열차용 주요전장품 개발)

  • Lee, Kwang-Joo;Jung, Man-Gyu;Bang, Lee-Seok;Kim, Du-Sik;Seo, Kwang-Duk;Kim, Kuk-Jin;Kang, Byeong-Koan
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.638-641
    • /
    • 1997
  • This paper describes the electrical design, characteristic and test results of both VVVF Inverter system and a auxiliary power supply system for UTM-01. As the propulsion system for SLIMs, GTO type VVVF inverter is used. IGBT 3 level inverter is adopt in Auxiliary Power Supply system. The control of two systems is fully digitalized by DSP TMS320C31. So a performance of two systems is more improved.

  • PDF

A Study on Regenerative OTEC System using the Condenser Effluent of Uljin Nuclear Power Plant (울진 원자력발전소 온배수를 이용한 재생식 해양온도차발전에 대한 연구)

  • Kang, Yun-Young;Park, Sung-Seek;Park, Yun-Beom;Kim, Nam-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.7
    • /
    • pp.591-597
    • /
    • 2012
  • For the past few years, the concern for clean energy has been greatly increased. Ocean thermal Energy Conversion(OTEC) power plants are studied as a viable option for the supply of clean energy. In this study, we examined the thermodynamic performance of the OTEC power system for the production of electric power. Computer simulation programs were developed under the same condition and various working fluids for closed Rankine cycle, regenerative cycle, Kalina cycle, open cycle, and hybrid cycle. The results show that the regenerative cycle showed the best system efficiency. And then we examined the thermodynamic performance of regenerative cycle OTEC power system using the condenser effluent from Uljin nuclear power plant instead of the surface water. The highest system efficiency of the condition was 4.55% and the highest net power was 181 MW.