• Title/Summary/Keyword: Power Conversion System

Search Result 1,264, Processing Time 0.026 seconds

Capacitance Value Analysis of Sub-module Test Circuit for MMC-based HVDC System (MMC 기반 HVDC 시스템용 서브모듈 시험회로의 커패시터 용량 분석)

  • Seo, Byuong-Jun;Park, Kwon-Sik;Jo, Kwang-Rae;Nho, Eui-Cheol;Kim, Heung-Geun;Chun, Tae-Won;Kim, Tae-Jin;Lee, Jong-Pil
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.6
    • /
    • pp.433-439
    • /
    • 2018
  • This study considers the design of a submodule test circuit for the modular multi-level converter (MMC)-based HVDC systems. A novel submodule test circuit is proposed to provide not only an AC but also a DC component to the submodule current. However, the current waveforms depend on the capacitor voltages. Therefore, determining the capacitance value of the test circuit is important. Finding a proper capacitance value is easy when the proposed analysis method is used. Simulation and experimental results show the usefulness of the proposed method.

Monolithic SiGe Up-/Down-Conversion Mixers with Active Baluns

  • Lee, Sang-Heung;Lee, Seung-Yun;Bae, Hyun-Cheol;Lee, Ja-Yol;Kim, Sang-Hoon;Kim, Bo-Woo;Kang, Jin-Yeong
    • ETRI Journal
    • /
    • v.27 no.5
    • /
    • pp.569-578
    • /
    • 2005
  • The purpose of this paper is to describe the implementation of monolithically matching circuits, interface circuits, and RF core circuits to the same substrate. We designed and fabricated on-chip 1 to 6 GHz up-conversion and 1 to 8 GHz down-conversion mixers using a 0.8 mm SiGe hetero-junction bipolar transistor (HBT) process technology. To fabricate a SiGe HBT, we used a reduced pressure chemical vapor deposition (RPCVD) system to grow a base epitaxial layer, and we adopted local oxidation of silicon (LOCOS) isolation to separate the device terminals. An up-conversion mixer was implemented on-chip using an intermediate frequency (IF) matching circuit, local oscillator (LO)/radio frequency (RF) wideband matching circuits, LO/IF input balun circuits, and an RF output balun circuit. The measured results of the fabricated up-conversion mixer show a positive power conversion gain from 1 to 6 GHz and a bandwidth of about 4.5 GHz. Also, the down-conversion mixer was implemented on-chip using LO/RF wideband matching circuits, LO/RF input balun circuits, and an IF output balun circuit. The measured results of the fabricated down-conversion mixer show a positive power conversion gain from 1 to 8 GHz and a bandwidth of about 4.5 GHz.

  • PDF

A New Solar Energy Conversion System Implemented Using Single Phase Inverter (단상 인버터를 이용한 새로운 태양광 에너지 변환 시스템 구현)

  • Kim, Sil-Keun;Hong, Soon-Ill
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.7
    • /
    • pp.74-80
    • /
    • 2006
  • This paper describes a solar energy conversion strategy is applied to grid-connected single phase inverter by the maximum power point of conversion strategy. The maximum power point of tracking is controlled output power of PV(photovoltaic)modules, based on generated circuit control MOSFET switch of two boost converter for a connected single phase inverter with four IGBT's switch in full bridge. The generation control circuit allows each photovoltaic module to operate independently at peak capacity, simply by detecting of the output power of PV module. Furthermore, the generation control circuit attenuates low-frequency ripple voltage. which is caused by the full-bridge inverter, across the photovoltaic modules. The effectiveness of the proposed inverter system is confirmed experimentally and by means of simulation.

Implementation of a High Efficiency Grid-Tied Multi-Level Photovoltaic Power Conditioning System Using Phase Shifted H-Bridge Modules

  • Lee, Jong-Pil;Min, Byung-Duk;Yoo, Dong-Wook
    • Journal of Power Electronics
    • /
    • v.13 no.2
    • /
    • pp.296-303
    • /
    • 2013
  • This paper proposes a high efficiency three-phase cascaded phase shifted H-bridge multi-level inverter without DC/DC converters for grid-tied multi string photovoltaic (PV) applications. The cascaded H-bridge topology is suitable for PV applications since each PV module can act as a separate DC source for each cascaded H-bridge module. The proposed phase shifted H-bridge multi-level topology offers advantages such as operation at a lower switching frequency and a lower current ripple when compared to conventional two level topologies. It is also shown that low ripple sinusoidal current waveforms are generated with a unity power factor. The control algorithm permits the independent control of each DC link voltage with a maximum power point for each string of PV modules. The use of the controller area network (CAN) communication protocol for H-bridge multi-level inverters, along with localized PWM generation and PV voltage regulation are implemented. It is also shown that the expansion and modularization capabilities of the H-bridge modules are improved since the individual inverter modules operate more independently. The proposed topology is implemented for a three phase 240kW multi-level PV power conditioning system (PCS) which has 40kW H-bridge modules. The experimental results show that the proposed topology has good performance.

Bi-Directional Buck-Boost Forward Converter for Photovoltaic Module type Power Conditioning System (태양광 모듈형 전력조절기를 위한 양방향 벅-부스트 포워드 컨버터)

  • Kim, Kyoung-Tak;Jeon, Young-Tae;Park, Joung-Hu
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.4
    • /
    • pp.335-342
    • /
    • 2016
  • This paper proposes an energy storage-assisted, series-connected module-integrated power conversion system that integrates a photovoltaic power conditioner and a charge balancing circuit. In conventional methods, a photovoltaic power conditioner and a cell-balancing circuit are needed for photovoltaic systems with energy storage devices, but they cause a complex configuration and high cost. Moreover, an imbalanced output voltage of the module-integrated converter for PV panels can be a result of partial shading. Partial shading can lead to the fault condition of the boost converter in shaded modules and high voltage stresses on the devices in other modules. To overcome these problems, a bidirectional buck-boost converter with an integrated magnetic device operating for a charge-balancing circuit is proposed. The proposed circuit has multiple secondary rectifiers with inductors sharing a single magnetic core, which works as an inductor for the main bidirectional charger/discharger of the energy storage. The secondary rectifiers operate as a cell-balancing circuit for both energy storage and the series-connected multiple outputs of the module-integrated converter. The operating principle of the cell-balancing power conversion circuit and the power stage design are presented and validated by PSIM simulation for analysis. A hardware prototype with equivalent photovoltaic modules is implemented for verification. The results verify that the modularized photovoltaic power conversion system in the output series with an energy storage successfully works with the proposed low-cost bidirectional buck-boost converter comprising a single magnetic device.

Comparison of Conventional DC-DC Converter and a Family of Diode-Assisted DC-DC Converter in Renewable Energy Applications

  • Zhang, Yan;Liu, Jinjun;Ma, Xiaolong;Feng, Junjie
    • Journal of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.203-216
    • /
    • 2014
  • In the conventional dc-dc converter, a pair of additional diode and the adjacent passive component capacitor/inductor can be added to the circuit with an X-shape connection, which generates a family of new topologies. The novel circuits, also called diode-assisted dc-dc converter, enhance the voltage boost/buck capability and have a great potential for high step-up/step-down power conversions. This paper mainly investigates and compares conventional dc-dc converter and diode-assisted dc-dc converter in wide range power conversion from the aspects of silicon devices, passive components requirements, electro-magnetic interference (EMI) and efficiency. Then, a comprehensive comparison example of a high step-up power conversion system was carried out. The two kinds of boost dc-dc converters operate under the same operation conditions. Mathematical analysis and experiment results verify that diode-assisted dc-dc converters are very promising for simultaneous high efficiency and high step-up/step-down power conversion in distributed power supply systems.

Reliability Improvement of H-Bridge Multi-level Inverter for Medium-Voltage & High-Power Induction Motor Drives (고전압 대용량 유도전동기 구동용 H-브릿지 멀티레벨 인버터의 신뢰성 향상)

  • Park, Young-Min;Lee, Kwang-Hwan;Lee, Se-Hyun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.99-105
    • /
    • 2014
  • This paper proposes the reliability improvement of H-Bridge Multi-level (HBM) inverter. This reliability can be implemented through modularization of power circuit, distribution of controller, duplication of controller and communication, and continuous operation method in case of power cell failure for driving medium-voltage & high-power induction motor. It is shown that the modularization and expansion characteristics of the HBM inverter are improved since the individual inverter modules operate more independently when using the proposed concept. Also the fault tolerance is increased by using power cell bypass. The proposed design and control methods are described in detail and the validity of the proposed system is verified experimentally in various industrial fields.

A Study on the Transmission Length Limitation by Chromatic Dispersion in High Speed FOT스s (초고속 광파이버 전송시스템에서 색분산에 의한 전송거리 제한에 관한 연구)

  • 정은숙;김재평;정진호;김영권
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.4 no.3
    • /
    • pp.18-29
    • /
    • 1993
  • In single mode fiber optic transmission systems(FOT's) operated at high modulation rates over long fiber spans, chromatic dispersion can produce distortion in the demodulated waveforms, resulting in intersymbol interference(ISI) in the received signal and a reduction of transmission system performance. In this paper, chromatic dispersion limitations for intensity modulation and direct detection(IM-DD) systems are studied by considering the effect of phase modulation to amplitude modulation (PM-AM) conversion noise. Laser phase noise conversion to amplitude noise due to fiber chromatic dispersion is analyzed by deriving the noise power spectral density. We first derive the noise power spectral density of the laser phase noise to intensity noise conver- sion. Next, also evaluate the system power penalty and the transmitter laser linewidth required to avoid PM-AM conversion noise penalties in long-haul nonregenerative transmission system using an external modulator and optical amplifiers. For such system with optical amplifiers, transmission sys- tem length is limited due to fiber chromatic dispersion, even if an ideal external modulator is used.

  • PDF

PSCAD/EMTDC BASED MODELING AND ANALYSIS OF A GRID-CONNECTED VARIABLE SPEED WIND ENERGY CONVERSION SCHEME (계통연계형 가변속 풍력발전방식의 PSCAD/EMTDC 모의 및 해석)

  • 김슬기;김응상
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.8
    • /
    • pp.413-419
    • /
    • 2003
  • The paper presents a simulation model and analysis of a grid-connected variable speed wind energy conversion scheme (VSWECS) using the PSCAD/EMTDC software. The modeled system uses a variable speed drive, a fixed pitch angle, a synchronous generator as a wind generator and an AC-DC-AC conversion scheme, which facilitates the wind generation to efficiently operate under varying wind speed while connected to the distribution network. The power output of the WECS is controlled by the AC-DC-AC conversion scheme, the objective of which is to capture the maximum active power under varying wind conditions and to keep the voltage magnitude of the terminal bus at a specific level. Aerodynamic models are applied for a wind turbine model. An simulation analysis of the scheme in terms of its responding to wind variations is also presented.

Novel Peak-Power Tracking Algorithm for Photovoltaic Conversion System

  • Kim, Sil-Keun;Hong, Soon-Ill;Hong, Jeng-Pyo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.9
    • /
    • pp.25-31
    • /
    • 2007
  • In this paper, a novel MPPT(Maximum Power Point Tracking) algorithm for power of PV(Photovoltaic) systems is presented using a boost converter for a connected single phase inverter. On the basic principle of power generation for the PV(photovoltaic) module, the model of a PV system is presented. On the basis of this model, simulation of this PV system and algorithms for maximum power point tracking are described by utilizing a boost converter to adjust the output voltage of the PV module. Based on output power of a boost converter, single phase inverter uses predicted current control to control four IGBT#s switch in full bridge. Furthermore, a low cost control system for solar energy conversion using the DSP is developed, based on the boost converter to adjust the output voltage of the PV module. The effectiveness of the proposed inverter system is confirmed experimentally and by means of simulation. Finally, experimental results confirm the superior performance of the proposed method.