• Title/Summary/Keyword: Power Consumption Information

Search Result 2,473, Processing Time 0.027 seconds

Multi-Channel Analog Front-End for Auditory Nerve Signal Detection (청각신경신호 검출 장치용 다중채널 아나로그 프론트엔드)

  • Cheon, Ji-Min;Lim, Seung-Hyun;Lee, Dong-Myung;Chang, Eun-Soo;Han, Gun-Hee
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.1
    • /
    • pp.60-68
    • /
    • 2010
  • In case of sensorineural hearing loss, auditory perception can be activated by electrical stimulation of the nervous system via electrode implanted into the cochlea or auditory nerve. Since the tonotopic map of the human auditory nerve has not been definitively identified, the recording of auditory nerve signal with microelectrode is desirable for determining the tonotopic map. This paper proposes the multi-channel analog front-end for auditory nerve signal detection. A channel of the proposed analog front-end consists of an AC coupling circuit, a low-power 4th-order Gm-C LPF, and a single-slope ADC. The AC coupling circuit transfers only AC signal while it blocks DC signal level. Considering the bandwidth of the auditory signal, the Gm-C LPF is designed with OTAs adopting floating-gate technique. For the channel-parallel ADC structure, the single-slope ADC is used because it occupies the small silicon area. Experimental results shows that the AC coupling circuit and LPF have the bandwidth of 100 Hz - 6.95 kHz and the ADC has the effective resolution of 7.7 bits. The power consumption per a channel is $12\;{\mu}W$, the power supply is 3.0 V, and the core area is $2.6\;mm\;{\times}\;3.7\;mm$. The proposed analog front-end was fabricated in a 1-poly 4-metal $0.35-{\mu}m$ CMOS process.

Design of a Fully Integrated Low Power CMOS RF Tuner Chip for Band-III T-DMB/DAB Mobile TV Applications (Band-III T-DMB/DAB 모바일 TV용 저전력 CMOS RF 튜너 칩 설계)

  • Kim, Seong-Do;Oh, Seung-Hyeub
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.4
    • /
    • pp.443-451
    • /
    • 2010
  • This paper describes a fully integrated CMOS low-IF mobile-TV RF tuner for Band-III T-DMB/DAB applications. All functional blocks such as low noise amplifier, mixers, variable gain amplifiers, channel filter, phase locked loop, voltage controlled oscillator and PLL loop filter are integrated. The gain of LNA can be controlled from -10 dB to +15 dB with 4-step resolutions. This provides a high signal-to-noise ratio and high linearity performance at a certain power level of RF input because LNA has a small gain variance. For further improving the linearity and noise performance we have proposed the RF VGA exploiting Schmoock's technique and the mixer with current bleeding, which injects directly the charges to the transconductance stage. The chip is fabricated in a 0.18 um mixed signal CMOS process. The measured gain range of the receiver is -25~+88 dB, the overall noise figure(NF) is 4.02~5.13 dB over the whole T-DMB band of 174~240 MHz, and the measured IIP3 is +2.3 dBm at low gain mode. The tuner rejects the image signal over maximum 63.4 dB. The power consumption is 54 mW at 1.8 V supply voltage. The chip area is $3.0{\times}2.5mm^2$.

An Energy-Delay Efficient System with Adaptive Victim Caches (선택적 희생 캐쉬를 이용한 저전력 고성능 시스템 설계 방안)

  • Kim Cheol Hong;Shim Sunghoon;Jhon Chu Shik;Jhang Seong Tae
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.32 no.11_12
    • /
    • pp.663-674
    • /
    • 2005
  • We propose a system aimed at achieving high energy-delay efficiency by using adaptive victim caches. Particularly, we investigate methods to improve the hit rates in the first level of memory hierarchy, which reduces the number of accesses to mort power consuming memory structures such as L2 cache. Victim cache is a memory element for reducing conflict misses in a direct-mapped L1 cache. We present two techniques to fill the victim cache with the blocks that have higher probability to be re-reqeusted by processor. Hit-based victim cache ks tilled with the blocks which were referenced frequently by processor. Replacement-based victim cache is filled with the blocks which were evicted from the sets where block replacements had happened frequently According to our simulations, replacement-based victim cache scheme outperforms the conventional victim cache scheme about $2\%$ on average and refutes the power consumption by up to $8\%$.

The Design of 10-bit 200MS/s CMOS Parallel Pipeline A/D Converter (10-비트 200MS/s CMOS 병렬 파이프라인 아날로그/디지털 변환기의 설계)

  • Chung, Kang-Min
    • The KIPS Transactions:PartA
    • /
    • v.11A no.2
    • /
    • pp.195-202
    • /
    • 2004
  • This paper introduces the design or parallel Pipeline high-speed analog-to-digital converter(ADC) for the high-resolution video applications which require very precise sampling. The overall architecture of the ADC consists of 4-channel parallel time-interleaved 10-bit pipeline ADC structure a]lowing 200MSample/s sampling speed which corresponds to 4-times improvement in sampling speed per channel. Key building blocks are composed of the front-end sample-and-hold amplifier(SHA), the dynamic comparator and the 2-stage full differential operational amplifier. The 1-bit DAC, comparator and gain-2 amplifier are used internally in each stage and they were integrated into single switched capacitor architecture allowing high speed operation as well as low power consumption. In this work, the gain of operational amplifier was enhanced significantly using negative resistance element. In the ADC, a delay line Is designed for each stage using D-flip flops to align the bit signals and minimize the timing error in the conversion. The converter has the power dissipation of 280㎽ at 3.3V power supply. Measured performance includes DNL and INL of +0.7/-0.6LSB, +0.9/-0.3LSB.

A Novel Idle Mode Operation in IEEE 802.11 WLANs: Prototype Implementation and Performance Evaluation (IEEE 802.11 WLAN을 위한 Idle Mode Operation: Prototype 구현 및 성능 측정)

  • Jin, Sung-Geun;Han, Kwang-Hun;Choi, Sung-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.2A
    • /
    • pp.152-161
    • /
    • 2007
  • IEEE 802.11 Wireless Local Area Network (WLAN) became a prevailing technology for the broadband wireless Internet access, and new applications such as Voice over WLAM (VoWLAN) are fast emerging today. For the battery-powered VoWLAN devices, the standby time extension is a key concern for the market acceptance while today's 802.11 is not optimized for such an operation. In this paper, we propose a novel Idle Mode operation, which comprises paging, idle handoff, and delayed handoff. Under the idle mode operation, a Mobile Host (MH) does not need to perform a handoff within a predefined Paging Area (PA). Only when the MH enters a new PA, an idle handoff is performed with a minimum level of signaling. Due to the absence of such an idle mode operation, both IP paging and Power Saving Mode (PSM) have been considered the alternatives so far even though they are not efficient approaches. We implement our proposed scheme in order to prove the feasibility. The implemented prototype demonstrates that the proposed scheme outperforms the legacy alternatives with respect to energy consumption, thus extending the standby time.

Key Bit-dependent Attack on Side-Channel Analysis-Resistant Hardware Binary Scalar Multiplication Algorithm using a Single-Trace (부채널 분석에 안전한 하드웨어 이진 스칼라 곱셈 알고리즘에 대한 단일 파형 비밀 키 비트 종속 공격)

  • Sim, Bo-Yeon;Kang, Junki;Han, Dong-Guk
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.5
    • /
    • pp.1079-1087
    • /
    • 2018
  • Binary scalar multiplication which is the main operation of elliptic curve cryptography is vulnerable to the side-channel analysis. Especially, it is vulnerable to the side-channel analysis which uses power consumption and electromagnetic emission patterns. Thus, various countermeasures have been studied. However, they have focused on eliminating patterns of data dependent branches, statistical characteristic according to intermediate values, or the interrelationships between data. No countermeasure have been taken into account for the secure design of the key bit check phase, although the secret scalar bits are directly loaded during that phase. Therefore, in this paper, we demonstrate that we can extract secret scalar bits with 100% success rate using a single power or a single electromagnetic trace by performing key bit-dependent attack on hardware implementation of binary scalar multiplication algorithm. Experiments are focused on the $Montgomery-L{\acute{o}}pez-Dahab$ ladder algorithm protected by scalar randomization. Our attack does not require sophisticated pre-processing and can defeat existing countermeasures using a single-trace. As a result, we propose a countermeasure and suggest that it should be applied.

A Time-Domain Comparator for Micro-Powered Successive Approximation ADC (마이크로 전력의 축차근사형 아날로그-디지털 변환기를 위한 시간 도메인 비교기)

  • Eo, Ji-Hun;Kim, Sang-Hun;Jang, Young-Chan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.6
    • /
    • pp.1250-1259
    • /
    • 2012
  • In this paper, a time-domain comparator is proposed for a successive approximation (SA) analog-to-digital converter (ADC) with a low power and high resolution. The proposed time-domain comparator consists of a voltage-controlled delay converter with a clock feed-through compensation circuit, a time amplifier, and binary phase detector. It has a small input capacitance and compensates the clock feed-through noise. To analyze the performance of the proposed time-domain comparator, two 1V 10-bit 200-kS/s SA ADCs with a different time-domain comparator are implemented by using 0.18-${\mu}m$ 1-poly 6-metal CMOS process. The measured SNDR of the implemented SA ADC is 56.27 dB for the analog input signal of 11.1 kHz, and the clock feed-through compensation circuit and time amplifier of the proposed time-domain comparator enhance the SNDR of about 6 dB. The power consumption and area of the implemented SA ADC are 10.39 ${\mu}W$ and 0.126 mm2, respectively.

A Traffic Pattern Matching Hardware for a Contents Security System (콘텐츠 보안 시스템용 트래픽 패턴 매칭 하드웨어)

  • Choi, Young;Hong, Eun-Kyung;Kim, Tae-Wan;Paek, Seung-Tae;Choi, Il-Hoon;Oh, Hyeong-Cheol
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.1
    • /
    • pp.88-95
    • /
    • 2009
  • This paper presents a traffic pattern matching hardware that can be used in high performance network applications. The presented hardware is designed for a contents security system which is to block various kinds of information drain or intrusion activities. The hardware consists of two parts: the header lookup and string pattern matching parts. For implementing the header lookup part in hardware, the TCAMs(ternary CAMs) are popularly used. Since the TCAM approach is inefficient in terms of the hardware and memory costs and the power consumption, however, we adopt and modify an alternative approach based on the comparator arrays and the HiCuts tree. Our implementation results, using Xilinx FPGA XC4VSX55, show that our design can reduce the usage of the FPGA slices by about 26%, and the Block RAM by about 58%. In the design of string pattern matching part, we design and use a hashing module based on cellular automata, which is hardware efficient and consumes less power by adaptively changing its configuration to reduce the collision rates.

Performance Analysis on The Reactive Repeater Jamming Techniques Against an RCIED Using Mobile Devices (모바일 단말을 이용한 RCIED에 대한 repeater 방식의 반응 재밍 기법 성능 분석)

  • Kim, Yo-Han;Kim, Dong-Gyu;Kim, Hyoung-Nam
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.12
    • /
    • pp.55-63
    • /
    • 2015
  • Recently, terroristic threats using a radio controlled improvised explosive device (RCIED) that is remotely controlled and exploded have been increased around the world. In order to prevent the explosion of an RCIED, jamming techniques that interrupt an RCIED receiver can be used, so that the receiver can not demodulate the trigger code. Conventional jamming technique is a type of active barrage jamming that always emits the noise jamming signal for all the frequency band. However, it needs large power consumption and thus is limited in operation time for a vehicle. In order to overcome the shortage of the active barrage jamming, reactive jamming technique has drawn attention. In reactive jamming, all the frequency band is firstly scanned, and then if any trigger signal exists, one emits the jamming signal to the corresponding frequency band. Therefore, the reactive jamming is superior to the active barrage jamming in terms of power efficiency. However, a reactive jammer emits a jamming signal only after the trigger signal is intercepted, which means that the jamming signal may be late for interrupting an RCIED receiver. In this sense, it is needed to evaluate a delay in an RCIED receiver. To achieve this, we analyze the reaction time and present the simulation result for jamming performance of reactive jamming against an RCIED using mobile devices.

Design of a Readout Circuit of Pulse Rate and Pulse Waveform for a U-Health System Using a Dual-Mode ADC (이중 모드 ADC를 이용한 U-Health 시스템용 맥박수와 맥박파형 검출 회로 설계)

  • Shin, Young-San;Wee, Jae-Kyung;Song, Inchae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.9
    • /
    • pp.68-73
    • /
    • 2013
  • In this paper, we proposed a readout circuit of pulse waveform and rate for a U-health system to monitor health condition. For long-time operation without replacing or charging a battery, either pulse waveform or pulse rate is selected as the output data of the proposed readout circuit according to health condition of a user. The proposed readout circuit consists of a simple digital logic discriminator and a dual-mode ADC which operates in the ADC mode or in the count mode. Firstly, the readout circuit counts pulse rate for 4 seconds in the count mode using the dual-mode ADC. Health condition is examined after the counted pulse rate is accumulated for 1 minute in the discriminator. If the pulse rate is out of the preset normal range, the dual-mode ADC operates in the ADC mode where pulse waveform is converted into 10-bit digital data with the sampling frequency of 1 kHz. These data are stored in a buffer and transmitted by 620 kbps to an external monitor through a RF transmitter. The data transmission period of the RF transmitter depends on the operation mode. It is generally 1 minute in the normal situation or 1 ms in the emergency situation. The proposed readout circuit was designed with $0.11{\mu}m$ process technology. The chip area is $460{\times}800{\mu}m^2$. According to measurement, the power consumption is $161.8{\mu}W$ in the count mode and $507.3{\mu}W$ in the ADC mode with the operating voltage of 1 V.