• Title/Summary/Keyword: Power Closed-Loop Control

검색결과 267건 처리시간 0.027초

Modified Digital Pulse Width Modulator for Power Converters with a Reduced Modulation Delay

  • Qahouq, Jaber Abu;Arikatla, Varaprasad;Arunachalam, Thanukamalam
    • Journal of Power Electronics
    • /
    • 제12권1호
    • /
    • pp.98-103
    • /
    • 2012
  • This paper presents a digital pulse width modulator (DPWM) with a reduced digital modulation delay (a transport delay of the modulator) during the transient response of power converters. During the transient response operation of a power converter, as a result of dynamic variations such as load step-up or step-down, the closed loop controller will continuously adjust the duty cycle in order to regulate the output voltage. The larger the modulation delays, the larger the undesired output voltage deviation from the reference point. The three conventional DPWM techniques exhibit significant leading-edge and/or trailing-edge modulation delays. The DPWM technique proposed in this paper, which results in modulation delay reductions, is discussed, experimentally tested and compared with conventional modulation techniques.

Online Compensation of Parameter Variation Effects for Robust Interior PM Synchronous Motor Drives

  • Shrestha, Rajendra L.;Seok, Jul-Ki
    • Journal of Power Electronics
    • /
    • 제11권5호
    • /
    • pp.713-718
    • /
    • 2011
  • This paper presents an online voltage disturbance estimator to achieve precise torque control of IPMSMs over a high speed operating region. The proposed design has a type of state-filter based on a Luenburger-style closed loop stator current vector observer. Utilizing the frequency response plot (FRF) approach, the estimation accuracy and the parameter sensitivities are analyzed. Accurate torque control and improved efficiency are provided with the decoupling of the effect of the parameter variations. The feasibility of the presented idea is verified by laboratory experiments.

Decentralized Neural Network-based Excitation Control of Large-scale Power Systems

  • Liu, Wenxin;Sarangapani, Jagannathan;Venayagamoorthy, Ganesh K.;Liu, Li;Wunsch II, Donald C.;Crow, Mariesa L.;Cartes, David A.
    • International Journal of Control, Automation, and Systems
    • /
    • 제5권5호
    • /
    • pp.526-538
    • /
    • 2007
  • This paper presents a neural network based decentralized excitation controller design for large-scale power systems. The proposed controller design considers not only the dynamics of generators but also the algebraic constraints of the power flow equations. The control signals are calculated using only local signals. The transient stability and the coordination of the subsystem control activities are guaranteed through rigorous stability analysis. Neural networks in the controller design are used to approximate the unknown/imprecise dynamics of the local power system and the interconnections. All signals in the closed loop system are guaranteed to be uniformly ultimately bounded. To evaluate its performance, the proposed controller design is compared with conventional controllers optimized using particle swarm optimization. Simulations with a three-machine power system under different disturbances demonstrate the effectiveness of the proposed controller design.

System Modeling and Robust Control of an AMB Spindle : Part I Modeling and Validation for Robust Control

  • Ahn, Hyeong-Joon;Han, Dong-Chul
    • Journal of Mechanical Science and Technology
    • /
    • 제17권12호
    • /
    • pp.1844-1854
    • /
    • 2003
  • This paper discusses details of modeling and robust control of an AMB (active magnetic bearing) spindle, and part I presents a modeling and validation process of the AMB spindle. There are many components in AMB spindle : electromagnetic actuator, sensor, rotor, power amplifier and digital controller. If each component is carefully modeled and evaluated, the components have tight structured uncertainty bounds and achievable performance of the system increases. However, since some unknown dynamics may exist and the augmented plant could show some discrepancy with the real plant, the validation of the augmented plant is needed through measuring overall frequency responses of the actual plant. In addition, it is necessary to combine several components and identify them with a reduced order model. First, all components of the AMB spindle are carefully modeled and identified based on experimental data, which also render valuable information in quantifying structured uncertainties. Since sensors, power amplifiers and discretization dynamics can be considered as time delay components, such dynamics are combined and identified with a reduced order. Then, frequency responses of the open-loop plant are measured through closed-loop experiments to validate the augmented plant. The whole modeling process gives an accurate nominal model of a low order for the robust control design.

DSP Based Series-Parallel Connected Two Full-Bridge DC-DC Converter with Interleaving Output Current Sharing

  • Sha, Deshang;Guo, Zhiqiang;Lia, Xiaozhong
    • Journal of Power Electronics
    • /
    • 제10권6호
    • /
    • pp.673-679
    • /
    • 2010
  • Input-series-output-parallel (ISOP) connected DC-DC converters enable low voltage rating switches to be used in high voltage input applications. In this paper, a DSP is adopted to generate digital phase-shifted PWM signals and to fulfill the closed-loop control function for ISOP connected two full-bridge DC-DC converters. Moreover, a stable output current sharing control strategy is proposed for the system, with which equal sharing of the input voltage and the load current can be achieved without any input voltage control loops. Based on small signal analysis with the state space average method, a loop gain design with the proposed scheme is made. Compared with the conventional IVS scheme, the proposed strategy leads to simplification of the output voltage regulator design and better static and dynamic responses. The effectiveness of the proposed control strategy is verified by the simulation and experimental results of an ISOP system made up of two full-bridge DC-DC converters.

One-Cycle Control Strategy with Active Damping for AC-DC Matrix Converter

  • Liu, Xiao;Zhang, Qingfan;Hou, Dianli
    • Journal of Power Electronics
    • /
    • 제14권4호
    • /
    • pp.778-787
    • /
    • 2014
  • This study presents an input filter resonance mitigation method for an AC-DC matrix converter. This method combines the advantages of the one-cycle control strategy and the active damping technique. Unnecessary sensors are removed, and system cost is reduced by employing the grid-side input currents as feedback to damp out LC resonance. A model that includes the proposed method and the input filter is established with consideration of the delay caused by the actual controller. A zero-pole map is employed to analyze model stability and to investigate virtual resistor parameter design principles. Based on a double closed-loop control scheme, the one-cycle control strategy does not require any complex modulation index control. Thus, this strategy can be more easily implemented than traditional space vector-based methods. Experimental results demonstrate the veracity of theoretical analysis and the feasibility of the proposed approach.

초전도 플라이휠 에너지 저장장치의 강인제어를 이용한 전력계통의 저주파진동 억제 (Damping of Low Frequency Oscillation in Power System using Robust Control of Superconductor Flywheel Energy Storage System)

  • 이정필;김한근
    • Progress in Superconductivity
    • /
    • 제14권1호
    • /
    • pp.52-59
    • /
    • 2012
  • In this paper, the robust superconductor flywheel energy storage system(SFESS) controller using $H_{\infty}$ control theory was designed to damp low frequency oscillation of power system. The main advantage of the $H_{\infty}$ controller is that uncertainties of power system can be included at the stage of controller design. Both disturbance attenuation and robust stability for the power system were treated simultaneously by using mixed sensitivity $H_{\infty}$ problem. The robust stability and the performance for uncertainties of power system were represented by frequency weighted transfer function. To verify control performance of proposed SFESS controller using $H_{\infty}$ control, the closed loop eigenvalue and the damping ratio in dominant oscillation mode of power system were analyzed and nonlinear simulation for one-machine infinite bus system was performed under disturbance for various operating conditions. The results showed that the proposed $H_{\infty}$ SFESS controller was more robust than conventional power system stabilizer (PSS).

게임이론을 이용한 OFDM 시스템의 전력제어 (Game Theory based Power Control for OFDM System)

  • 이령경;조해근;고은경;임연준;황인관;송명선
    • 한국통신학회논문지
    • /
    • 제32권4A호
    • /
    • pp.373-378
    • /
    • 2007
  • 본 논문에서는 CR(Cognitive Radio)의 가장 적합한 인공지능 기술로 주목받고 있는 게임이론을 전력 제어 방식에 적용해 OFDM 시스템 기반의 사용효율과 효용에 대한 성능 평가 결과를 제시하였다. 사용자와 네트워크 동시 최적화를 위한 효용함수식을 정의했으며 모의실험을 통해 FOM(Figure of Merit)과 형평성(Fairness)에서 기존의 전력제어 방식보다 월등한 성능을 입증하였다. 또한 게임이론을 이용한 전력 제어 방식은 통신 환경을 인지하고 연산하여 적합한 최적의 서비스를 제공하는 CR의 여러 분야에 확장 적용 가능성을 제시하였다.

불확실한 상태 천이를 가진 입력/상태 비동기 머신을 위한 견실 제어 (Robust Control of Input/state Asynchronous Machines with Uncertain State Transitions)

  • 양정민
    • 전자공학회논문지SC
    • /
    • 제46권4호
    • /
    • pp.39-48
    • /
    • 2009
  • 전역 클럭 없이 동작하는 비동기 순차 머신은 동기 순차 머신에 비해서 속도나 에너지 소비 면에서 장점을 지닌다. 본 논문에서는 불확실한 상태 천이를 가지는 입력/상태 비동기 머신을 위한 견실 제어기를 제안한다. 논문에서 고려하는 비동기 머신은 모델 불확실성, 내부 고장 등으로 인해서 일부 영역의 상태 천이 함수가 불확실하다. 이번 연구에서는 이러한 비동기 머신을 표현하는 유한 상태 머신 식을 제안한 후 일반화된 도달가능성 행렬을 이용하여 머신의 폐루프 동작이 주어진 정상적인 모델의 동작과 일치하도록 하는 비동기 제어기가 존재할 조건을 규명한다. 또한 기존 연구 결과를 바탕으로 비동기 제어기의 설계 과정을 기술하고 폐루프 시스템의 안정 상태 동작을 분석한다.

터보펌프+가스발생기 폐회로 연계시험 (Turbopump+Gas generator Closed-loop coupled test)

  • 김승한;남창호;김철웅;문윤완;설우석
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년도 제31회 추계학술대회논문집
    • /
    • pp.129-132
    • /
    • 2008
  • 30톤급 액체산소/케로신 추진제 액체로켓엔진 개발을 위해 연소기를 제외한 터보펌프, 가스발생기 등의 주요 엔진 구성품을 이용한 터보펌프+가스발생기 폐회로 연계시험을 수행하였다. 터보펌프+가스발생기 폐회로 연계시험에서는 엔진시스템 작동 조건을 구현하기 위해 연소기는 유량조절 오리피스로 모사하였다. 엔진시스템 모사조건에서 터보펌프+가스발생기 폐회로 연계시험기의 예냉, 시동 및 정격조건 작동이 성공적으로 수행되어 터보펌프와 가스발생기의 작동성을 검증하였다. 연계시험기의 출력 및 혼합비 제어를 위한 제어시스템도 성공적으로 검증되었다.

  • PDF